There is increasing interest in the potential of trees to sequester carbon (C) in above- and below-ground stocks to mitigate against increasing concentrations of greenhouse gases (GHG). This study determined whether pasture-tree (PT) systems influence soil C stocks compared with open pasture (OP) by sampling four sites with trees aged 14 to16 years. Poplars (Populus spp.) at Tikokino and Woodville and alders (Alnus spp.) at Poukawa and Ruakura were planted on contrasting soils (Haplustands, Endoaquepts, Durustalfs and Humaquepts, respectively). Trees at all four sites were arranged in partial-Nelder radial planting designs, with five stem densities ranging from 67 to 1276 stems ha. Soils were sampled at five stem density classes, along with adjacent OP areas in the same paddock, to a depth of 1 m (0-75, 75-150, 150-300, 300-600, 600-1000 mm). At three of the four sites, root mass density was greater (P < 0.05) in PT than in OP systems. At Woodville, estimates of total soil C mass to 1 m tended to be greater (P = 0.08) in the OP than in the PT system (200 vs. 163 Mg C ha, respectively), whereas no significant differences in total soil C masses between OP and PT were shown at the remaining sites (P > 0.10). Despite the limited statistical significance, estimates of total soil C mass at Tikokino and Woodville (sites with poplars) were 11 and 18% greater in OP than in PT systems, whereas estimates at Poukawa and Ruakura (sites with alders) were 2 and 6% greater in PT than in OP systems. Under the current conditions, our study suggests that tree species may be an additional factor influencing the C cycle and C accumulation in soils and need to be considered in the building of our soil C inventories.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.136910DOI Listing

Publication Analysis

Top Keywords

pasture-tree systems
8
tikokino woodville
8
poukawa ruakura
8
greater systems
8
sites
5
soil
4
soil carbon
4
carbon stocks
4
stocks grazed
4
grazed pasture
4

Similar Publications

Article Synopsis
  • Vascular epiphytes in tropical montane cloud forests are at risk due to climate change, as rising cloud bases limit moisture and atmospheric inputs, particularly for those growing on isolated pasture trees.
  • Researchers studied the water relations of these epiphytes in Monteverde, Costa Rica, measuring sap velocity and microclimate variables across different seasons and sites.
  • Results showed that drought conditions increased the turgor loss point of the epiphytes, with significant correlations between microclimate and sap velocity in the wet season, highlighting potential vulnerabilities in pasture trees compared to those in the forest.
View Article and Find Full Text PDF

There is increasing interest in the potential of trees to sequester carbon (C) in above- and below-ground stocks to mitigate against increasing concentrations of greenhouse gases (GHG). This study determined whether pasture-tree (PT) systems influence soil C stocks compared with open pasture (OP) by sampling four sites with trees aged 14 to16 years. Poplars (Populus spp.

View Article and Find Full Text PDF

Trees' role in nitrogen leaching after organic, mineral fertilization: a greenhouse experiment.

J Environ Qual

June 2011

Centro Universitario de plasencia, Univ. de Extremadura, Avda. Virgen delPuerto, 10600 Plasencia-Caceres, Spain.

New sustainable agriculture techniques are arising in response to the environmental problems caused by intensive agriculture, such as nitrate leaching and surface water eutrophication. Organic fertilization (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!