Previous studies have shown that BDE-47, one of the most abundant polybrominated diphenyl ethers (PBDEs) congeners, has a weak estrogenic activity, but it has remained unclear whether BDE-47 disrupts gonadal development and causes male-to-female sex reversal in lower vertebrates, with limited and controversial data. The present study aimed to determine the effects of BDE-47 on gonadal development in Xenopus laevis, a model amphibian species for studying adverse effects of estrogenic chemicals on reproductive development. X. laevis at stage 45/46 were exposed to BDE-47 (0.5, 5, 50 nM) in semi-static system, with 1 nM 17β-estradiol (E2) as the positive control. When reaching stage 53, tadpoles were examined for gonadal morphology, histology and sex-dimorphic gene expression. The phenotypic sex (gonadal morphology and histology) of each BDE-47-treated tadpole matched its genetic sex, showing no sex-reversal, whereas one half of genetic males treated with E2 displayed ovarian-like features. However, some genetic males (26%) in the 50 nM BDE-47 treatment group were found to contain more germ cells clumping together in the medulla, along with an increasing tendency of the gonad length/kidney length ratio in males, resembling feminizing outcomes of E2. These observations seem to suggest that BDE-47 exerted weak feminizing effects. However, BDE-47 induced increases in expression of both female-biased genes and male-biased genes in two sexes, which disagrees with feminizing outcomes, suggesting complicated effects of BDE-47 on gonadal development. Taken together, all results demonstrate that nanomolar BDE-47 disrupted gonadal development and exerted weak feminizing effects, but not resulted in male-to-female sex reversal in X. laevis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2020.105441 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!