Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The tumorgenesis process of lung cancer involves the regulatory dysfunctions of multiple pathways. Although many signaling pathways have been identified to be associated with lung cancer, there are little quantitative models of how inactions between genes change during the process from normal to cancer. These changes belong to different dynamic co-expressions patterns. We quantitatively analyzed differential co-expression of gene pairs in four datasets. Each dataset included a large number of lung cancer and normal samples. By overlapping their results, we got 14 highly confident gene pairs with consistent co-expression change patterns. Some of they, such as ARHGAP30 and GIMAP4, had been recorded in STRING network database while some of them were novel discoveries, such as C9orf135 and MORN5, TEKT1 and TSPAN1 were positively correlated in both normal and cancer but more correlated in normal than cancer. These gene pairs revealed the underlying mechanisms of lung cancer occurrence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygeno.2020.02.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!