The structure of adsorbed surfactant layers at the equilibrium state has already been investigated using various experimental techniques. However, the comprehension of the formation of structural intermediates in nonequilibrium states and the resulting adsorption kinetics still remain a challenging task. The temporal characterization of these intermediate structures provides further understanding of the layer structure at equilibrium and of the main interactions involved in the adsorption process. In this article, we studied the adsorption kinetics of AOT vesicles on silica at different pHs at ambient temperature. The AOT vesicles were formed in a brine solution. Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to obtain information on the kinetics of surfactant adsorption and on the structure of the adsorbed layer at the equilibrium state. Additionally, neutron reflectivity experiments were performed to provide a detailed description of the mean surfactant concentration profile normal to the surface at equilibrium. Results suggest that vesicles in the bulk influence the adsorption mechanisms. In acidic conditions, after a time-dependent structural rearrangement step, followed by the rupture of initially adsorbed vesicles, the formation of a bilayer was observed. At an intermediate and basic pH, in spite of the electrostatic repulsion between the negatively charged surfactants and silica, results demonstrated the existence of an adsorbed layer composed of AOT vesicles. Vesicles are more or less closely packed depending on the pH of the solution. Results show a non-negligible influence of NaCl addition at pH values where adsorption is initially inhibited. Vesicle adsorption at the intermediate and basic pH is probably due to the combination of attractive van der Waals interactions promoted in high ionic strength systems and the formation of hydrogen bonds. Interpretation of adsorption kinetics gave insight into adsorption mechanisms in an electrostatic repulsion environment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b03897DOI Listing

Publication Analysis

Top Keywords

adsorption kinetics
12
aot vesicles
12
adsorption
10
vesicle adsorption
8
structure adsorbed
8
equilibrium state
8
adsorbed layer
8
adsorption mechanisms
8
intermediate basic
8
electrostatic repulsion
8

Similar Publications

The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.

View Article and Find Full Text PDF

Integration of ratiometric, ultrafast, sensitive detection as well as rapid and efficient removal of tetracycline based on a novel Zn (II) functionalized magnetic covalent organic framework.

Anal Chim Acta

March 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:

Background: Based on the low volatility and refractory nature of Tetracycline (TC), excessive use leads to its continuous accumulation in water environments, posing serious risks to the ecological environment and human health. Although a very limited number of nanomaterials capable of simultaneously detecting and removing TC have been fabricated, they generally exist issues associated with a single detection signal ("on" or "off") or low adsorption rates with low adsorption capacities. As a result, it is crucial to develop a reliable technique to achieve ratiometric detection as well as rapid and efficient removal of TC.

View Article and Find Full Text PDF

Herein, pine needles derived spherical nanocellulose (SNC) was combined with aniline to form SNC-polyaniline (SNC-PANI), followed by modification with montmorillonite (MMT) to form SNC-PANI-MMT composite. The as-synthesized materials were characterized by FTIR, XRD, XPS, TGA, FESEM, and EDS and evaluated for the simultaneous adsorption of cationic and anionic dyes, malachite green (MG), and Congo red (CR) from MG-CR mixture, and fuchsin basic (FB) and methyl orange (MO) from FB-MO mixture. Non-linear kinetics of adsorption showed the anionic dyes, CR and MO to follow pseudo-first order kinetics with 91.

View Article and Find Full Text PDF

In this study, the interaction of waste snake skin (Periostracum serpentis), a keratin-based biowaste composite material, with uranyl ions, the predominant form of uranium in aqueous solutions, was investigated to determine whether it could be used as an adsorbent. SEM, FTIR, BET and EDX analyses were performed to elucidate the material's surface and structural properties. The effects of the amount of adsorbent, uranyl ion concentration, pH, temperature, and adsorption time were investigated to optimize uranium removal with this material.

View Article and Find Full Text PDF

P-band center modulated and heterostructure stabilized 1T-MoS as bidirectional electrocatalyst for Lithium-Sulfur batteries.

J Colloid Interface Sci

January 2025

School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China. Electronic address:

Lithium-sulfur batteries (LSBs) are considered as the most potential next-generation rechargeable energy storage devices due to their high theoretical energy density. However, the commercialization is severely hampered by the shuttle effect and sluggish sulfur redox kinetics of sulfur cathodes. Herein, we propose MoS/CN heterostructures as potential cathodes for LSBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!