A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fractional occupation numbers and self-interaction correction-scaling methods with the Fermi-Löwdin orbital self-interaction correction approach. | LitMetric

Fractional occupation numbers and self-interaction correction-scaling methods with the Fermi-Löwdin orbital self-interaction correction approach.

J Comput Chem

Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, University of California-Riverside, Riverside, California.

Published: May 2020

We present a new assessment of the Fermi-Löwdin orbital self-interaction correction (FLO-SIC) approach with an emphasis on its performance for predicting energies as a function of fractional occupation numbers (FONs) for various multielectron systems. Our approach is implemented in the massively parallelized NWChem quantum chemistry software package and has been benchmarked on the prediction of total energies, atomization energies, and ionization potentials of small molecules and relatively large aromatic systems. Within our study, we also derive an alternate expression for the FLO-SIC energy gradient expressed in terms of gradients of the Fermi-orbital eigenvalues and revisit how the FLO-SIC methodology can be seen as a constrained unitary transformation of the canonical Kohn-Sham orbitals. Finally, we conclude with calculations of energies as a function of FONs using various SIC-scaling methods to test the limits of the FLO-SIC formalism on a variety of multielectron systems. We find that these relatively simple scaling methods do improve the prediction of total energies of atomic systems as well as enhance the accuracy of energies as a function of FONs for other multielectron chemical species.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.26168DOI Listing

Publication Analysis

Top Keywords

energies function
12
fractional occupation
8
occupation numbers
8
fermi-löwdin orbital
8
orbital self-interaction
8
self-interaction correction
8
fons multielectron
8
multielectron systems
8
prediction total
8
total energies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!