Brain-computer interfaces (BCIs) aim to help paralysed patients to interact with their environment by controlling external devices using brain activity, thereby bypassing the dysfunctional motor system. Some neuronal disorders, such as amyotrophic lateral sclerosis (ALS), severely impair the communication capacity of patients. Several invasive and non-invasive brain-computer interfaces (BCIs), most notably using electroencephalography (EEG), have been developed to provide a means of communication to paralysed patients. However, except for a few reports, all available BCI literature for the paralysed (mostly ALS patients) describes patients with intact eye movement control, i.e. patients in a locked-in state (LIS) but not a completely locked-in state (CLIS). In this article we will discuss: (1) the fundamental neuropsychological learning factors and neurophysiological factors determining BCI performance in clinical applications; (2) the difference between LIS and CLIS; (3) recent development in BCIs for communication with patients in the completely locked-in state; (4) the effect of BCI-based communication on emotional well-being and quality of life; and (5) the outlook and the methodology needed to provide a means of communication for patients who have none. Thus, we present an overview of available studies and recent results and try to anticipate future developments which may open new doors for BCI communication with the completely paralysed.

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP278775DOI Listing

Publication Analysis

Top Keywords

locked-in state
12
brain-computer interfaces
8
interfaces bcis
8
patients
8
paralysed patients
8
provide communication
8
completely locked-in
8
communication patients
8
communication
6
neuropsychological neurophysiological
4

Similar Publications

Observation of Optical Chaotic Solitons and Modulated Subharmonic Route to Chaos in Mode-Locked Laser.

Phys Rev Lett

December 2024

East China Normal University, State Key Laboratory of Precision Spectroscopy, and Hainan Institute, Shanghai, China.

We reveal a new scenario for the transition of solitons to chaos in a mode-locked fiber laser: the modulated subharmonic route. Its universality is confirmed in two different laser configurations, namely, a figure-of-eight and a ring laser. Numerical simulations of the laser models agree well with the experiments.

View Article and Find Full Text PDF

Previous studies have shown that perceptual performance can be modulated at specific frequencies phase-locked to self-paced motor actions, but findings have been inconsistent. To investigate this effect at the population level, we tested 50 participants who performed a self-paced button press followed by a threshold-level detection task, using both fixed- and random-effects analyses. Contrary to expectations, the aggregated data showed no significant action-related modulation.

View Article and Find Full Text PDF

Micromirror technology is one of the current research hotspots. In this work, what we believe to be a novel electrostatic 2-DOF micromirror structure with double-biased torsional axes is proposed. By introducing internal resonance, synchronous motions of the two axes with a locked frequency ratio under a single driving force were achieved within a wide frequency range.

View Article and Find Full Text PDF

We demonstrated what is believed to be the first 1.2 GHz nonlinear polarization rotation stretched-pulse mode-locked Yb:fiber laser with a compact design and innovative components. With a compact Faraday rotation angle has been used in NPR mode-locked lasers, and we find that incomplete isolation of backward-propagating light does not hinder self-starting.

View Article and Find Full Text PDF

Designing an online BCI forum: insights from researchers and end-users.

J Neural Eng

January 2025

Department of Psychology, Julius-Maximilians-Universitat Wurzburg, Marcusstrasse 9-11,   97070 Würzburg, Germany, Würzburg, 97070, GERMANY.

Objective: Brain-computer interfaces (BCIs) can support non-muscular communication and device control for severely paralyzed people. However, efforts that directly involve potential or actual end-users and address their individual needs are scarce, demonstrating a translational gap. An online BCI forum supported by the BCI Society could initiate and sustainably strengthen interactions between BCI researchers and end-users to bridge this gap.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!