The characterization of arsenic biotransformation microbes in paddy soil after straw biochar and straw amendments.

J Hazard Mater

State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Published: June 2020

Straw biochar and straw application to paddy soil dramatically altered arsenic (As) biogeochemical cycling in soil-rice system, but it remains unknown how As biotransformation microbes (ABMs) contribute to these processes. In this study, rice pot experiments combining terminal restriction fragment length polymorphism (T-RFLP) analysis and clone library were performed to characterize ABMs. Through linear discriminant analysis (LDA) effect size (LEfSe) and correlation analysis, results revealed that arrA-harbouring iron-reducing bacteria (e.g., Geobacter and Shewanella) and arsC-harbouring Gammaproteobacteria (e.g., fermentative hydrogen-producing and lignin-degrading microorganisms) potentially mediated arsenate [As(V)] reduction under biochar and straw amendments, respectively. Methanogens and sulfate-reducing bacteria (SRB) carrying arsM gene might regulate methylated As concentration in soil-rice system. Network analysis demonstrated that the association among ABMs in rhizosphere was significantly stronger than that in bulk soil. Arsenite [As(III)] methylators carrying arsM gene exhibited much stronger co-occurrence pattern with arsC-harbouring As(V) reducers than with arrA-harbouring As(V) reducers. This study would broaden our insights for the dramatic variation of As biogeochemical cycling in soil-rice system after straw biochar and straw amendments through the activities of ABMs, which could contribute to the safe rice production and high rice yield in As-contaminated fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.122200DOI Listing

Publication Analysis

Top Keywords

biochar straw
16
straw biochar
12
straw amendments
12
soil-rice system
12
biotransformation microbes
8
paddy soil
8
biogeochemical cycling
8
cycling soil-rice
8
abms contribute
8
carrying arsm
8

Similar Publications

The impact of straw and biochar on carbon mineralization and the function of carbon cycle genes in paddy soil is important for soil nutrient management and the transformation of carbon pools. This research is based on a five-year field experiment with four treatments: no fertilizer application (CK); chemical fertilizer only (NPK); straw combined with chemical fertilizer (NPKS); and biochar combined with chemical fertilizer (NPKB). By integrating indoor mineralization culture with metagenomic approaches, we analyzed the response of organic carbon mineralization and carbon cycle genes in typical paddy soil from Guizhou Province, China, to different fertilization treatments.

View Article and Find Full Text PDF

Nitrogen doping turns carbonaceous materials into fast-reacting catalysts for reductive dechlorination.

Environ Pollut

January 2025

Department of Plant and Environmental Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. Electronic address:

Nitrogen (N) doping of biomass prior pyrolysis has been identified as an effective approach for enhancing biochar catalytic reactivity. However, high-temperature pyrolysis of N-rich biomass may produce N-devoid biochars with high reactivity, calling for attention to the true causes of the reactivity increases and the role of nitrogen. In this study, N-doped wheat straw biochar (N-BC) materials were produced using urea as N dopant and different pyrolysis conditions, and their catalytic reactivity assessed for the reduction of trichloroethylene (TCE) by green rust (GR), a layered Fe(II)Fe(III) hydroxide.

View Article and Find Full Text PDF

Agricultural amendments enhanced the redox cycling of iron species and hydroxyl radical formation during redox fluctuation of paddy soil.

J Hazard Mater

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China. Electronic address:

Hydroxyl radical (OH) plays a critical role in accelerating organic contaminant attenuation during water-table decline in paddy soil, but the impacts of widely applied agricultural amendments (e.g., organic manure, rice straw, and biochar) on these processes have been rarely explored.

View Article and Find Full Text PDF

Analysis of the Pyrolysis Kinetics, Reaction Mechanisms, and By-Products of Rice Husk and Rice Straw via TG-FTIR and Py-GC/MS.

Molecules

December 2024

Biochar Engineering & Technology Research Center of Liaoning Province, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.

Article Synopsis
  • The study analyzed the pyrolysis behaviors of rice husk (RH) and rice straw (RS) using various scientific techniques, revealing distinct stages of pyrolysis for each organic material.
  • The activation energies for the different components (pseudo-hemicellulose, pseudo-cellulose, and pseudo-lignin) were calculated, showing varying levels of energy requirement between RH and RS.
  • RS demonstrated better pyrolysis performance and produced a greater variety of valuable by-products compared to RH, indicating potential for utilization in agriculture, bioenergy, and chemical sectors.
View Article and Find Full Text PDF

Adding additives exogenously is an effective strategy to enhance methanogenic activity and improve AD stability. Corn straw-based biochar@MIL-88A(Fe) (BM) was synthesized herewith and used as an exogenous additive to boost methane (CH) production. After adding BM at 250 mg/g WAS VS, the accumulative CH production and maximum CH yield increased by 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!