One of the multiple factors believed to contribute to the initiation and maintenance of atrial fibrillation (AF) is altered activity of the autonomic nervous system. Debate continues about the role of the vagus nerve (CNX) in AF since its effect depends on the level of its activation as well as on simultaneous sympathetic activation. Surplus either vagal or sympathetic activity may rarely induce the development of AF; however, typically loss of balance between the both systems mediates the induction and maintenance of AF. Vagal stimulation has been proposed as a novel treatment approach for AF because the anti-arrhythmic effects of low-level vagus nerve stimulation have been shown both in patients and animal models. We hypothesize that in typical cases of AF without any clear trigger by either autonomic nervous system, significant changes in vagus somatosensory evoked potentials and a smaller cross-sectional area of CNX could be detected, representing functional and structural changes in CNX, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mehy.2020.109608DOI Listing

Publication Analysis

Top Keywords

vagus nerve
16
functional structural
8
structural changes
8
changes vagus
8
autonomic nervous
8
nervous system
8
vagus
5
evaluating functional
4
nerve
4
nerve vagus
4

Similar Publications

NLRP3 inflammasome and gut microbiota-brain axis: a new perspective on white matter injury after intracerebral hemorrhage.

Neural Regen Res

January 2025

Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.

Intracerebral hemorrhage is the most dangerous subtype of stroke, characterized by high mortality and morbidity rates, and frequently leads to significant secondary white matter injury. In recent decades, studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota-brain axis. This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury.

View Article and Find Full Text PDF

Does transcutaneous auricular vagus nerve stimulation alter pupil dilation? A living Bayesian meta-analysis.

Brain Stimul

January 2025

Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), partner site Tübingen. Electronic address:

Background: Transcutaneous vagus nerve stimulation (tVNS) has emerged as a promising technique to modulate autonomic functions, and pupil dilation has been recognized as a promising biomarker for tVNS-induced monoaminergic release. Nevertheless, studies on the effectiveness of various tVNS protocols have produced heterogeneous results on pupil dilation to date.

Methods: Here, we synthesize the existing evidence and compare conventional ("continuous") and pulsed stimulation protocols using a Bayesian meta-analysis.

View Article and Find Full Text PDF

VNS-induced dose-dependent pupillary response in refractory epilepsy.

Clin Neurophysiol

January 2025

Institute of Neuroscience (IoNS), Catholic University of Louvain, Brussels, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium; Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.

Purpose: The Locus Coeruleus (LC) plays a vital role by releasing norepinephrine, which contributes to the antiepileptic effects of Vagus Nerve Stimulation (VNS). LC activity also influences pupil dilation. Investigating VNS dose-dependent Pupillary Dilation Response (PDR) may provide novel neurophysiological insights into therapeutic response and allow for an objective and personalized optimization of stimulation parameters.

View Article and Find Full Text PDF

Background: Multiple system atrophy-cerebellar subtype (MSA-C) is a predominance of cerebellar ataxia and autonomic failure. MSA-C has a rapid progression, with average 9 years from symptom onset to death. Despite its prevalence, there is still a lack of effective treatments.

View Article and Find Full Text PDF

The vagus nerve (VN) is the primary parasympathetic nerve, providing two-way communication between the body and brain through a network of afferent and efferent fibers. Evidence suggests that altered VN signaling is linked to changes in the neuroimmune system, including microglia. Dysfunction of microglia, the resident innate immune cells of the brain, is associated with various neurodevelopmental disorders, including schizophrenia, attention deficit hyperactive disorder (ADHD), autism spectrum disorder (ASD), and epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!