Direct analysis of naphthenic acids in constructed wetland samples by condensed phase membrane introduction mass spectrometry.

Sci Total Environ

Applied Environmental Research Laboratories, Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 1700, Stn CSC, Victoria, British Columbia V8W 2Y2, Canada. Electronic address:

Published: May 2020

The application of direct mass spectrometry techniques to the analysis of complex samples has a number of advantages including reduced sample handling, higher sample throughput, in situ process monitoring, and the potential for adaptation to on-site analysis. We report the application of a semi-permeable capillary hollow fibre membrane probe (immersed directly into an aqueous sample) coupled to a triple quadrupole mass spectrometer by a continuously flowing methanol acceptor phase for the rapid analysis of naphthenic acids with unit mass resolution. The intensity of the naphthenic acid-associated peaks in the mass spectrum are normalized to an internal standard in the acceptor phase for quantitation and the relative abundance of the peaks in the mass spectrum are employed to monitor compositional changes in the naphthenic acid mixture using principle component analysis. We demonstrate the direct analysis of a synthetic oil sands process-affected water for classical naphthenic acids (CHO) as they are attenuated through constructed wetlands containing sedge (Carex aquatilis), cattail (Typha latifolia), or bulrush (Schoenoplectus acutus). Quantitative results for on-line membrane sampling compare favourably to those obtained by solid-phase extraction high-resolution mass spectrometry. Additionally, chemometric analysis of the mass spectra indicates a clear discrimination between naphthenic acid-influenced and natural background waters. Furthermore, the compositional changes within complex naphthenic acid mixtures track closely with the degree of attenuation. Overall, the technique is successful in following changes in both the concentration and composition of naphthenic acids from synthetic oil sands process-affected waters, with the potential for high throughput screening and environmental forensics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137063DOI Listing

Publication Analysis

Top Keywords

naphthenic acids
16
mass spectrometry
12
direct analysis
8
naphthenic
8
analysis naphthenic
8
mass
8
acceptor phase
8
peaks mass
8
mass spectrum
8
compositional changes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!