After skin tissue injury or pathological removal, vascularization timing is paramount in graft survival. As full thickness skin grafts often fail to become perfused over larger surfaces, split-thickness grafts are preferred and can be used together with biomaterials, which themselves are non-angiogenic. One way of promoting vascular ingrowth is to "pre-vascularize" an engineered substitute by introducing endothelial cells (ECs). Since it has been previously demonstrated that surface structured biomaterials have an effect on wound healing, skin regeneration, and fibrosis reduction, we proposed that a microvascular-rich lipoconstruct with anisotropic topographical cues could be a clinically translatable vascularization approach. Murine lipofragments were formed with three polydimethylsiloxane molds (flat, 5 µm, and 50 µm parallel gratings) and implanted into the dorsal skinfold chamber of male C57BL/6 mice. Vascular ingrowth was observed through intravital microscopy over 21 days and further assessed by histology and protein identification. Our investigation revealed that topographical feature size influenced the commencement of neovascular ingrowth, with 5 µm gratings exhibiting early construct perfusion at 3 days post-operation, and 50 µm being delayed until day 5. We therefore postulate that surface structured lipoconstructs may serve as an easily obtained and produced construct suitable for providing soft tissue and ECs to tissue defects. STATEMENT OF SIGNIFICANCE: Skin graft failures due to inadequate or uneven perfusion frequently occur and can be even more complicated in deep, difficult to heal wounds, or bone coverage. In complex injuries, biomaterials are often used to cover bone structures with a standard split thickness graft; however, perfusion can take up to 3 weeks. Thus, any means to promote faster and uniform vascularization could significantly reduce healing time, as well as lower patient down-time. As pre-vascularized constructs have reported success in research, we created a cost-efficient, translatable method with no additional laboratory time as adipose tissue can be harvested and used immediately. We further used surface topography as an aspect to modulate construct perfusion, which has been reported for the first time here.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2020.01.050DOI Listing

Publication Analysis

Top Keywords

surface topography
8
dorsal skinfold
8
skinfold chamber
8
vascular ingrowth
8
surface structured
8
construct perfusion
8
lipoconstruct surface
4
topography grating
4
grating size
4
size influences
4

Similar Publications

Assessment of surface treatment methods for strengthening the interfacial adhesion in CARALL fiber metal laminates.

Sci Rep

December 2024

Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.

Metal and polymer interface bonding significantly influences the mechanical performance of fiber metal laminates (FMLs). Therefore, the effect of surface treatments (mechanical abrasion, nitric acid etching, P2 etching, sulfuric acid anodizing (SAA), and electric discharge machine (EDM) texturing) carried on aluminum 2024-T3 alloy sheets was evaluated considering surface morphology, surface topography, and surface roughness. Further, the influence of surface treatments on interfacial adhesion strength and failure mode between the aluminum alloy and carbon fiber prepreg was investigated.

View Article and Find Full Text PDF

Development of a multi-scale nanofiber scaffold platform for structurally and functionally replicated artificial perforating arteries.

Bioprocess Biosyst Eng

December 2024

Department of Biological Engineering, Inha University, 100 Inha-Ro, Nam-Gu, Incheon, 22212, Republic of Korea.

Experimental models for exploring abnormal brain blood vessels, including ischemic stroke, are crucial in neuroscience; recently, significant attention has been paid to artificial tissues through tissue engineering. Nanofibers, although commonly used as tissue engineering scaffolds, undergo structural deformations easily, making it challenging to create uniform tissue, especially for the smallest-diameter ones such as perforating arteries. This study focused on the development of a platform capable of reconstructing structurally and functionally replicated perforating arteries.

View Article and Find Full Text PDF

Predicting corneal decompensation in Fuchs endothelial corneal dystrophy with Scheimpflug tomography and clinical parameters.

Indian J Ophthalmol

January 2025

Department of Ophthalmology, Université Paris Cité, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.

Purpose: This study aims to evaluate the efficacy of various tomographic indices, both established and novel, in predicting endothelial decompensation leading to either spontaneous corneal transplantation or transplantation following cataract surgery in patients with Fuchs endothelial corneal dystrophy (FECD).

Methods: In this cross-sectional, retrospective study, we reviewed the files of 93 eyes from 54 FECD patients undergoing regular follow-up. We recorded clinical metrics such as morning visual disturbance (MVD) and corrected distance visual acuity.

View Article and Find Full Text PDF

Despite the importance of the effect of subnanoscale roughness on contact line behavior, it is difficult to directly observe the local behavior of contact lines at the micro- and nanoscale, leaving significant gaps in our current understanding. In this research, we investigate contact line motions and their relationship with nanoscale surface topography using coherence scanning interferometry. Our experiments were conducted on the substrates with different wettability without changing nanoscale surface topography.

View Article and Find Full Text PDF

Heading toward the next-generation intelligent optical device, the meta-optics active tunability is one of the most desirable properties to expand its versatility beyond the traditional optical devices. Despite its advances via various tunable approaches, the encoding freedom of tuning capability still critically restricts its widespread engagement and dynamics in real-life applications. Here, we present a gesture-interactive scheme by topography flexible metasurfaces (TFMs) to expand the encoding freedom for the tuning capability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!