Cysteine string protein (CSP) was discovered by use of a synapse-specific, monoclonal antibody to screen a cDNA expression library in Drosophila. A vertebrate CSP homolog was later identified and shown to co-purify with synaptic vesicles. CSP-α is now recognized as a membrane constituent of many regulated secretory organelles. Knockout of the csp gene in Drosophila produced temperature-sensitive paralysis reflecting a loss of evoked (but not spontaneous) transmitter release. However, CSP's role in regulated exocytosis remains ambiguous. Fruit flies lacking the csp gene also exhibited nerve terminal degeneration as did mice deficient in the csp-α gene. This phenotype has been ascribed to the depletion of a functional pool of the t-SNARE, SNAP-25. However, recent studies showing that an endosomal pool of CSP-α contributes to a novel, protein-export pathway argues that CSP's role in neurodegeneration is more complex. Clients of this later pathway include tau and α-synuclein, proteins linked to neurodegeneration. Additionally, mutations in the csp-α gene cause an adult-onset, neuronal ceroid lipofuscinosis and diminished CSP-α expression is an early event in Alzheimer's disease. Collectively, these findings indicate that much remains to be learned about the role of CSPs in cellular secretory pathways and human disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pneurobio.2020.101758 | DOI Listing |
J Otol
October 2024
The Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
Objective: This study aims to explore the expression patterns of cysteine string protein alpha (CSPα) and cysteine string protein beta (CSPβ) in the mammalian inner ear, with an emphasis on their temporal dynamics during the developmental stages of C57BL/6 mice.
Methods: We utilized immunofluorescence staining to assess the localization and distribution of CSPα and CSPβ within the inner ears of C57BL/6 mice and miniature pigs. Additionally, this method facilitated the investigation of their temporal expression profiles.
Braz J Med Biol Res
November 2024
Department of Oncology, Affiliated Changshu Hospital of Nantong University, Suzhou, China.
J Biol Chem
December 2024
Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst Massachusetts, USA; Department of Chemistry, University of Massachusetts, Amherst Massachusetts, USA. Electronic address:
The complex mechanism of synaptic vesicle fusion with the plasma membrane for neurotransmitter release is initiated by the formation of the SNARE complex at the presynaptic terminal of the neuron. The SNARE complex is composed of four helices contributed by three proteins: one from syntaxin (localized at the plasma membrane), one from synaptobrevin (localized at the synaptic vesicle), and two from the intrinsically disordered and aggregation-prone synaptosomal-associated 25 kDa protein (SNAP-25), which is localized to the plasma membrane by virtue of palmitoylation of cysteine residues. The fusion process is tightly regulated and requires the constitutively expressed Hsp70 chaperone (Hsc70) and its J-protein co-chaperone CSPα.
View Article and Find Full Text PDFClin Proteomics
November 2024
Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
Background: COVID19 is a pandemic that has affected millions around the world since March 2020. While many patients recovered completely with mild illness, many patients succumbed to various organ morbidities. This heterogeneity in the clinical presentation of COVID19 infection has posed a challenge to clinicians around the world.
View Article and Find Full Text PDFFront Oncol
October 2024
Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
Introduction: FAS has been implicated in the development of various cancers, but its involvement in lung cancer has not been systematically characterized. In this study, we performed data mining in online tumor databases to investigate the expression, methylation, alterations, protein interactions, co-expression and prognostic significance of FAS in lung cancer.
Method: The expression, prognostic significance and molecular interactions of FAS in lung cancer was mined and analyzed using GENT2, GEPIA2, UALCAN, cBioPortal, STRING, GeneMANIA, UCSC Xena, Enrichr, and OSluca databases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!