The presence of synthetic polymers in the maturation medium affects the cryotolerance and developmental capacity after parthenogenic activation of vitrified goat oocytes.

Cryobiology

Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming City, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong County, Kunming City, Yunnan province, China. Electronic address:

Published: April 2020

The purpose of this present study is to assess if addition of the synthetic polymers in maturation medium can influence cryotolerance and subsequently embryonic development of mammalian oocytes. We examined the roles of two polymers, including polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), on in vitro maturation (IVM), embryonic developmental capacity, and cryotolerance of goat oocytes. The present study includes two parts. At first, goat cumulus-oocyte complexes (COCs) were matured in a medium supplemented with 10% fetal bovine serum (FBS), 3 mg/ml PVP, or 1 mg/ml PVA, respectively. Data of oocyte with first polar body, cleavage, and blastocyst following parthenogenetic activation (PA) were recorded. Secondly, after maturation in the above medium, oocytes were vitrified using the Cryotop technique and then the morphology, cleavage and blastocyst formation of vitrified oocytes have been checked. The results demonstrated that the adding of PVP or PVA in maturation medium can't affect IVM of goat oocytes in comparison with FBS, as concern cumulus cell expansion, first polar body formation, and embryonic development. Additionally, without plunging into liquid nitrogen, only exposure to the vitrification and warming solutions cannot also influence the quality of oocytes, in terms of morphology, cleavage, and blastocyst formation. However, after IVM with synthetic polymers and vitrification, the ratio of oocytes with standard morphology in PVP or PVA group was only 59.47% ± 3.56% or 54.86% ± 5.19%, respectively, and was significantly less than that in the FBS group (89.37% ± 4.52%, P < 0.05). Furthermore, the cleavage ratio of oocytes in PVP or PVA group was 37.41% ± 4.17% or 27.71% ± 3.91% and was considerably less than that in the FBS group (64.97% ± 4.69%, P < 0.05). In addition, the cleavage ratio in PVP group was statistically higher than that in PVA group (P < 0.05). In terms of blastocyst development, a significant difference was observed between the synthetic polymer group and the FBS group (24.96% ± 3.62%, P < 0.05). However, the blastocyst ratio in the PVA group (7.51% ± 1.68%) was statistically less than the PVP groups (13.20% ± 4.59%, P < 0.05) and the FBS group (P < 0.05). In conclusion, two potential serum replacements, either PVP or PVA, can support IVM and embryonic development of goat oocytes at the concentration used in this study. But IVM with synthetic polymers supplemented to maturation medium may reduce the cryotolerance of oocytes. Additionally, the supportive function of PVP on embryonic development of vitrified oocytes might be better than that of PVA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cryobiol.2020.02.004DOI Listing

Publication Analysis

Top Keywords

maturation medium
16
synthetic polymers
12
goat oocytes
12
cleavage blastocyst
12
polymers maturation
8
developmental capacity
8
oocytes
8
embryonic development
8
polar body
8
morphology cleavage
8

Similar Publications

Early developmental changes in GABAA receptor expression in nucleus accumbens medium spiny neurons.

Front Neurosci

December 2024

Stress Neurobiology Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States.

The expression of GABARs goes through large scale, evolutionarily conserved changes through the early postnatal period. While these changes have been well-studied in brain regions such as the hippocampus and sensory cortices, less is known about early developmental changes in other brain areas. The nucleus accumbens (NAc) is a major hub in the circuitry that mediates motivated behaviors and disruptions in NAc activity is a part of the neuropathology observed in mood and substance use disorders.

View Article and Find Full Text PDF

First report of foliar blight of castor bean caused by in Sinaloa, Mexico.

Plant Dis

December 2024

Universidad Autónoma de Occidente, CIENCIAS NATURALES Y EXACTAS , Carret. Internacional y Boulevard Macario Gaxiola, S/N, Los Mochis, Los Mochis, Sinaloa, Mexico, 81200.

Castor bean (Ricinus communis) is cultivated agriculturally for oil and ornamentally for its bright foliage and seed. Ornamental castor bean has naturalized in many areas of the world, including the state of Sinaloa, Mexico, where it is not planted commercially. In a survey conducted in 2019 in Sinaloa, wild castor bean was found widely affected by a foliar blight with symptoms similar to Alternaria ricini previously described in the United States (Stevenson 1945) and in the state of Chiapas, Mexico (López-Guillén et al.

View Article and Find Full Text PDF

Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD). Transformation of pro-interleukin (IL)-1β into a mature IL-1β via active inflammasome may be related to the progression of PD. Therefore, the modification of inflammasome activity may be a potential therapeutic strategy for PD.

View Article and Find Full Text PDF

In obesity, C-C chemokine ligand 2 (CCL2) plays a critical role in recruiting macrophages to white adipose tissue (WAT), contributing to chronic inflammation. In this study, we sought to explore the effects of fish oil (FO) on CCL2 expression and histone (H3K27)-modifying enzymes in both human model of preadipocytes and primary adipose-derived stem cells (ASCs). Present findings in preadipocytes lineage evidenced that lipopolysaccharide (LPS) increased (∼5.

View Article and Find Full Text PDF

Oligodendrocytes in Huntington's Disease: A Review of Oligodendrocyte Pathology and Current Cell Reprogramming Approaches for Oligodendrocyte Modelling of Huntington's Disease.

J Neurosci Res

December 2024

Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, School of Medical Science, Centre for Brain Research, University of Auckland, Auckland, New Zealand.

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder traditionally characterized by the selective loss of medium spiny neurons in the basal ganglia. However, it has become apparent that white matter injury and oligodendrocyte dysfunction precede the degeneration of medium spiny neurons, garnering interest as a key pathogenic mechanism of HD. Oligodendrocytes are glial cells found within the central nervous system involved in the production of myelin and the myelination of axons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!