Background: The patients with shoulder instability or disorders in overhead athletes have been considered to have an abnormal micromotion at the glenohumeral joint. However, the normal range of the micromotion has not been available during axial rotation with various abduction angles, especially above 90° abduction. This study aimed to investigate the glenohumeral translation and influence of the glenohumeral ligaments during axial rotation with up to maximum abduction.
Methods: Fourteen healthy volunteers performed active axial rotations at 0°, 90°, 135°, and maximal abduction angles. The positions of the humeral head center relative to the glenoid at maximally external, neutral, and maximally internal rotations (ER, NR, IR, respectively) for each abduction angle were evaluated using two- (2D) and three-dimensional (3D) shape matching registration techniques. The shortest pathway and its length between the origin and insertion of the superior, middle, and inferior glenohumeral ligaments (SGHL, MGHL, and IGHL, respectively) were calculated for each position.
Results: The glenohumeral joint showed 3.1 mm of superoinferior translation during axial rotation at 0° abduction (P < 0.0001), and 2.6 mm and 4.5 mm anteroposterior translation at 135° and maximal abduction (P < 0.0001), respectively. The SGHL and MGHL reached a maximum length at ER with 0° abduction, and the anterior and posterior bands of the IGHL reached a maximum at ER with 90° abduction and IR with 0° abduction.
Conclusions: These findings indicated that the SGHL played a role as an inferior suppressor at 0° abduction, while the anterior band of IGHL played a role as an anterior stabilizer at 90° abduction. Every glenohumeral ligament did not get taut and the anteroposterior translation became greater with increasing abduction angle, above 90°. These results could be used as a reference when comparing with the pathological shoulders in the future study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jos.2020.01.004 | DOI Listing |
Foot Ankle Int
January 2025
Division of Foot and Ankle, Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.
Background: Hallux valgus (HV) is a complex, multiplanar deformity. In this study, we examined the interrelationships between various components of this deformity using weightbearing computed tomography (WBCT). We hypothesized that the severity of traditional axial plane deformities would correlate with malpositioning of the metatarsosesamoid complex, first-ray coronal rotational deformity, and malalignment of the hindfoot and midfoot.
View Article and Find Full Text PDFAm J Case Rep
January 2025
Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
BACKGROUND The management of unstable atlas fractures remains a subject of ongoing debate and controversy. The conservative surgical treatment commonly involves fusion, resulting in severe loss of cervical spine mobility, and a large incisions and extensive tissue dissection are required. We aim to introduce a novel concept and surgical approach for treating atlas fracture, one that involves minimizing trauma while maintaining mobility of the upper cervical spine without resorting to fusion.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Ouest, Montreal, QC H3C 1K3, Canada.
Bolted joints, prevalent in industrial applications for component fastening, are susceptible to self-loosening-a critical issue resulting in a gradual reduction in clamping force. Gaining insight into the underlying mechanisms of self-loosening is crucial. While prior research has largely focused on evaluating component stiffness, limited attention has been given to its impact on the self-loosening behavior of bolted joints under transverse cyclic loading.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
January 2025
3D-Lab, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
Purpose: Currently, no gold standard exists for 3D analysis of virtually planned surgery accuracy postoperatively. The aim of this study was to present a new, validated and standardised methodology for 3D postoperative assessment of surgical accuracy in patients undergoing 3D virtually planned and guided corrective osteotomies.
Methods: All patients who underwent 3D planned corrective osteotomy in 2021-2022 at our center with a postoperative CT were included.
Fibrous dysplasia (FD) is a benign tumor condition in which normal bone is replaced by structurally deficient fibrous lamellar bone. It represents approximately 5-7% of benign bone tumors and occurs in two presentations: monostotic, which is the most common, and polyostotic. The proximal femur is one of the most common locations for benign tumors, including FD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!