Rationale: Paper spray mass spectrometry (PS-MS) was used to analyze and quantify ampicillin, a hydrophilic compound and frequently utilized antibiotic. Hydrophilic molecules are difficult to analyze via PS-MS due to their strong binding affinity to paper substrates and low ionization efficiency, among other reasons.

Methods: Solvent and paper parameters were optimized to increase the extraction of ampicillin from the paper substrate. After optimizing these key parameters, a Resolution IV 1/16 fractional factorial design with two center points was employed to screen eight different design parameters simultaneously.

Results: Pore size, sample volume, and solvent volume were the most significant factors affecting average peak area under the curve (AUC) and the signal-to-blank (S/B) ratio for the 1 μg/mL ampicillin calibrant. After optimizing the key parameters, a linear calibration curve with a range of 0.2 μg/mL to 100 μg/mL was generated (R  = 0.98) and the limit of detection (LOD) and lower limit of quantification (LLOQ) were calculated to be 0.07 μg/mL and 0.25 μg/mL, respectively.

Conclusions: The statistical optimization procedure undertaken here increased the mass spectral signal intensity by more than a factor of 40. This statistical method of screening followed by optimization experiments proved faster and more efficient, and produced more drastic improvements than typical one-factor-at-a-time experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.8601DOI Listing

Publication Analysis

Top Keywords

paper spray
8
spray mass
8
mass spectrometry
8
optimizing key
8
key parameters
8
paper
5
parameters
5
statistical approach
4
approach optimizing
4
optimizing paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!