Comparing Cryo-EM Reconstructions and Validating Atomic Model Fit Using Difference Maps.

J Chem Inf Model

Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom.

Published: May 2020

Cryogenic electron microscopy (cryo-EM) is a powerful technique for determining structures of multiple conformational or compositional states of macromolecular assemblies involved in cellular processes. Recent technological developments have led to a leap in the resolution of many cryo-EM data sets, making atomic model building more common for data interpretation. We present a method for calculating differences between two cryo-EM maps or a map and a fitted atomic model. The proposed approach works by scaling the maps using amplitude matching in resolution shells. To account for variability in local resolution of cryo-EM data, we include a procedure for local amplitude scaling that enables appropriate scaling of local map contrast. The approach is implemented as a user-friendly tool in the CCP-EM software package. To obtain clean and interpretable differences, we propose a protocol involving steps to process the input maps and output differences. We demonstrate the utility of the method for identifying conformational and compositional differences including ligands. We also highlight the use of difference maps for evaluating atomic model fit in cryo-EM maps.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254831PMC
http://dx.doi.org/10.1021/acs.jcim.9b01103DOI Listing

Publication Analysis

Top Keywords

atomic model
16
model fit
8
difference maps
8
conformational compositional
8
resolution cryo-em
8
cryo-em data
8
cryo-em maps
8
maps
6
cryo-em
5
comparing cryo-em
4

Similar Publications

Context: The two-dimensional graphene/MoTe heterostructure holds extensive potential applications in optoelectronic devices, sensors, and catalysts. To expand its optical applications, this study systematically investigates the adsorption stability of metal atoms (Au, Pt, Pd, and Fe) on the graphene/MoTe and their influence on its optoelectronic properties employing first-principles methods. The findings indicate that after the adsorption of Au and Pd, the structure retains its direct bandgap properties, while the adsorption of Pt and Fe exhibits indirect bandgap characteristics.

View Article and Find Full Text PDF

Recent advances in computational methods like AlphaFold have transformed structural biology, enabling accurate modeling of protein complexes and driving applications in drug discovery and protein engineering. However, predicting the structure of systems involving weak, transient, or dynamic interactions, or of complexes with disordered regions, remains challenging. Nuclear Magnetic Resonance (NMR) spectroscopy offers atomic-level insights into biomolecular complexes, even in weakly interacting and dynamic systems.

View Article and Find Full Text PDF

Sequential Infiltration Synthesis of Cadmium Sulfide Discrete Atom Clusters.

Angew Chem Int Ed Engl

January 2025

Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States.

Exposure of soft material templates to alternating volatile chemical precursors can produce inorganic deposition within the permeable template (e.g. a polymer thin film) in a process akin to atomic layer deposition (ALD).

View Article and Find Full Text PDF

Atomic nuclei serve as prime laboratories for investigations of complex quantum phenomena, where minor nucleon rearrangements cause significant structural changes. Pb is the heaviest known neutron-deficient Pb isotope that can exhibit three distinct shapes: prolate, oblate, and spherical, with nearly degenerate excitation energies. Here we report on the combined results from three state-of-the-art measurements to directly observe these deformations in Pb.

View Article and Find Full Text PDF

Meta-atoms: From Metamaterials to Metachips.

Research (Wash D C)

January 2025

State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 211189, China.

Electromagnetic (EM) metamaterials represent a cutting-edge field that achieves anomalously macroscopic properties through artificial design and arrangement of microstructure arrays to freely manipulate EM fields and waves in desired ways. The unit cell of a microstructure array is also called a meta-atom, which can construct effective medium parameters that do not exist in traditional materials or are difficult to realize with traditional technologies. By deep integration with digital information, the meta-atom is evolved to a digital meta-atom, leading to the emergence of information metamaterials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!