A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantification of floating riverine macro-debris transport using an image processing approach. | LitMetric

Quantification of floating riverine macro-debris transport using an image processing approach.

Sci Rep

Department of Civil Engineering, Faculty of Science and Technology, Tokyo University of Science, Chiba, 278-8510, Japan.

Published: February 2020

A new algorithm has been developed to quantify floating macro-debris transport on river surfaces that consists of three fundamental techniques: (1) generating a difference image of the colour difference between the debris and surrounding water in the CIELuv colour space, (2) detecting the debris pixels from the difference image, and (3) calculating the debris area flux via the template matching method. Debris pixels were accurately detected from the images taken of the laboratory channel and river water surfaces and were consistent with those detected by visual observation. The area fluxes were statistically significantly correlated with the mass fluxes measured through debris collection. The mass fluxes calculated by multiplying the area fluxes with the debris mass per unit area (M/A) were significantly related to the flood rising stage flow rates and agreed with the mass fluxes measured through debris collection. In our algorithm, plastic mass fluxes can be estimated via calibration using the mass percentage of plastics to the total debris in target rivers. Quantifying riverine macro-plastic transport is essential to formulating countermeasures, mitigating adverse plastic pollution impacts and understanding global-scale riverine macro-plastic transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010822PMC
http://dx.doi.org/10.1038/s41598-020-59201-1DOI Listing

Publication Analysis

Top Keywords

mass fluxes
16
macro-debris transport
8
difference image
8
debris
8
debris pixels
8
area fluxes
8
fluxes measured
8
measured debris
8
debris collection
8
riverine macro-plastic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!