Sulphur dioxide (SO) is removed from flue gases prior to discharge into the atmosphere by high temperature sulphation reactions with the mineral calcite (CaCO) in the form of calcite aggregates such as limestone. The efficiency of this industrial-scale process is constrained by the self-inhibiting growth of anhydrite (CaSO) along calcite grain boundaries. Using very high resolution X-ray μCT and Scanning Electron Microscopy we show, for the first time, how the sulphation reaction is initiated by the anisotropic thermal expansion of calcite grains to produce high inter-grain permeability. In turn fast gas-solid reaction occurs to produce a network of porous anhydrite layers between grains. Individual calcite grains are then free to rotate and translate with respect to each other as the sulphation reaction proceeds. Grain translations of up to 24 μm and rotations of up to 0.64 degrees have been tracked in samples of a highly compacted calcite aggregate (Carrara Marble) across up to 600,000 grains through heating and cooling cycles during exposure to SO gas flow at temperatures from 600 to 750 °C at one atmosphere. Such grain kinematics help to maintain gas phase permeability in the solid reactant and mitigate the inhibitory growth of porous anhydrite on grain boundaries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010692 | PMC |
http://dx.doi.org/10.1038/s41598-020-58216-y | DOI Listing |
Nanotechnology
January 2025
Electronic Sci.&Eng., Xi'an Jiaotong University, 28 Xianning West Road,Beilin District, Xi 'an, Shaanxi Province, China, Xi'an, 710049, CHINA.
The accurate estimation of the temperature distribution of the GaN based power devices and optimization of the device structure is of great significance to possibly solve the self-heating problem, which hinders the further enhancement of the device performances. We present here the operando temperature measurement with high spatial resolution using Raman spectroscopy of AlGaN/GaN high electron mobility transistors (HEMTs) with different device structures and explore the optimization of the device thermal design accordingly. The lateral and depth temperature distributions of the single-finger HEMT were characterized.
View Article and Find Full Text PDFAn Acad Bras Cienc
January 2025
Shandong University of Science and Technology, College of Earth Science and Engineering, 579, Qianwangang Road, Huangdao, Qingdao, Shandong Province, 266590, China.
A "comb-dentition", characterized by long, needle-like, and closely-spaced teeth, is found in the ctenochasmatid pterosaurs as an adaptation for filter-feeding. However, little is known about their tooth replacement pattern, hindering our understanding of the development of the filter-feeding apparatus of the clade. Here, we describe the tooth replacement of the pterosaur Forfexopterus from the Jehol Biota based on high-resolution X-ray Computed Tomography (CT) reconstruction.
View Article and Find Full Text PDFAnal Chem
January 2025
Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
Droplet-based microfluidics is a powerful tool for high-throughput analysis of liquid samples with significant applications in biomedicine and biochemistry. Nevertheless, extracting content-rich information from single picolitre-sized droplets at high throughputs remains challenging due to the weak signals associated with these small volumes. Overcoming this limitation would be transformative for fields that rely on high-throughput screening, enabling broader multiparametric analysis.
View Article and Find Full Text PDFSci Adv
January 2025
NOAA/National Ocean Service, Silver Spring, MD, USA.
Coastal vertical land motion (VLM), including uplift and subsidence, can greatly alter relative sea level projections and flood mitigations plans. Yet, current projection frameworks, such as the IPCC Sixth Assessment Report, often underestimate VLM by relying on regional linear estimates. Using high-resolution (90-meter) satellite data from 2015 to 2023, we provide local VLM estimates for California and assess their contribution to sea level rise both now and in future.
View Article and Find Full Text PDFSci Adv
January 2025
Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan.
Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!