Unsteady, dynamic flow regimes commonly found in shallow marine ecosystems such as coral reefs pose an energetic challenge for mobile organisms that typically depend on station-holding for fitness-related activities. The majority of experimental studies, however, have measured energetic costs of locomotion at steady speeds, with only a few studies measuring the effects of oscillatory flows. In this study, we used a bidirectional swimming respirometer to create six oscillatory water flow regimes consisting of three frequency and amplitude combinations for both unidirectional and bidirectional oscillatory flows. Using the goldring surgeonfish, , a pectoral-fin (labriform) swimmer, we quantified the net cost of swimming (swimming metabolic rate minus standard metabolic rate) associated with station-holding under these various conditions. We determined that the swimming costs of station-holding in the bidirectional flow regime increased by 2-fold compared with costs based on swimming over the same range of speeds at steady velocities. Furthermore, as we found minimal differences in energetic costs associated with station-holding in the unidirectional, oscillating flow compared with that predicted from steady swimming costs, we conclude that the added acceleration costs are minimal, while the act of turning is an energetically expensive endeavor for this reef fish species.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.212795DOI Listing

Publication Analysis

Top Keywords

energetically expensive
8
expensive endeavor
8
flow regimes
8
energetic costs
8
oscillatory flows
8
metabolic rate
8
associated station-holding
8
swimming costs
8
swimming
7
costs
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!