Background: Pre-operative risk scores are more valuable than post-procedure risk scores because of lacking effective treatment for contrast-induced acute kidney injury (CI-AKI). A number of pre-operative risk scores have been developed, but due to lack of effective external validation, most of them are also difficult to apply accurately in clinical practice. It is necessary to review and validate the published pre-operative risk scores for CI-AKI.
Materials And Methods: We systematically searched PubMed and EMBASE databases for studies of CI-AKI pre-operative risk scores and assessed their calibration and discriminatory in a cohort of 2669 patients undergoing coronary angiography or percutaneous coronary intervention (PCI) from September 2007 to July 2017. The definitions of CI-AKI may affect the validation results, so three definition were included in this study, CI-AKI broad1 was defined as an increase in serum creatinine (Scr) of 44.2 μmol/L or 25%; CI-AKI broad2, an increase in Scr of 44.2 μmol/L or 50%; and CI-AKI-narrow, an increase in Scr of 44.2 μmol/L. The calibration of the model was assessed with the Hosmer-Lemeshow test and the discriminatory capacity was identified by C-statistic.
Results: Of the 8 pre-operative risk scores for CI-AKI identified, 7 were single-center study and only 1 was based on multi-center study. In addition, 7 of the scores were just validated internally and only Chen score was externally validated. In the validation cohort of 2669 patients, the incidence of CI-AKI ranged from 3.0%(Liu) to 16.4%(Chen) for these scores. Furthermore, the incidence of CI-AKI was 6.59% (178) for CI-AKI broad1, 1.44% (39) for CI-AKI broad2, and 0.67% (18) for CI-AKI-narrow. For CI-AKI broads, C-statistics varied from 0.44 to 0.57. For CI-AKI-narrow, the Maioli score had the best discrimination and calibration, what's more, the C-statistics of Maioli, Chen, Liu and Ghani was ≥0.7.
Conclusion: Most pre-operative risk scores were established based on single-center studies and most of them lacked external validation. For CI-AKI broads, the prediction accuracy of all risk scores was low. The Maioli score had the best discrimination and calibration, when using the CI-AKI-narrow definition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011449 | PMC |
http://dx.doi.org/10.1186/s12882-020-1700-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!