Gold is one of the most selective catalysts for the electrochemical reduction of CO (CO2RR) to CO. However, the concomitant hydrogen evolution reaction (HER) remains unavoidable under aqueous conditions. In this work, a rotating ring disk electrode (RRDE) setup has been developed to study quantitatively the role of mass transport in the competition between these two reactions on the Au surface in 0.1 M bicarbonate electrolyte. Interestingly, while the faradaic selectivity for CO formation was found to increase with enhanced mass transport (from 67% to 83%), this effect is not due to an enhancement of the CO2RR rate. Remarkably, the inhibition of the competing HER from water reduction with increasing disk rotation rate is responsible for the enhanced CO2RR selectivity. This can be explained by the observation that, on the Au electrode, water reduction improves with more alkaline pH. As a result, the decrease in the local alkalinity near the electrode surface with enhanced mass transport suppresses HER due to the water reduction. Our study shows that controlling the local pH by mass transport conditions can tune the HER rate, in turn regulating the CO2RR and HER competition in the general operating potential window for CO2RR (-0.4 to -1 V vs RHE).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059182PMC
http://dx.doi.org/10.1021/jacs.9b10061DOI Listing

Publication Analysis

Top Keywords

mass transport
20
water reduction
12
hydrogen evolution
8
transport conditions
8
enhanced mass
8
mass
5
transport
5
co2rr
5
competition reduction
4
reduction hydrogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!