The use of DNA-encoded libraries has emerged as a powerful hit generation technology. Combining the power of combinatorial chemistry to enumerate large compound collections with the efficiency of affinity selection in pools, the methodology makes it possible to interrogate vast chemical space against biological targets of pharmaceutical relevance. Thus, the chemical transformations employed for the synthesis of encoded libraries play a crucial role in the identification of diverse and drug-like starting points. Currently established transformations have mostly been limited to water-compatible reactions to accommodate the growing oligonucleotide tag. Herein, we describe the development of a practical catch-and-release methodology utilizing a cationic, amphiphilic PEG-based polymer to perform chemical transformations on immobilized DNA conjugates under anhydrous conditions. We demonstrate the usefulness of our APTAC (amphiphilic polymer-facilitated transformations under anhydrous conditions) approach by performing several challenging transformations on DNA-conjugated small molecules in pure organic solvents: the addition of a carbanion equivalent to a DNA-conjugated ketone in tetrahydrofuran, the synthesis of saturated heterocycles using the tin (Sn) amine protocol (SnAP) in dichloromethane, and the dual-catalytic (Ir/Ni) metallaphotoredox decarboxylative cross-coupling of carboxylic acids to DNA-conjugated aryl halides in DMSO. In addition, we demonstrate the feasibility of the latter in multititer-plate format.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acscombsci.9b00164 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!