The Ebola virus (EBOV) envelope glycoprotein (GP) is a membrane fusion machine required for virus entry into cells. Following endocytosis of EBOV, the GP1 domain is cleaved by cellular cathepsins in acidic endosomes, removing the glycan cap and exposing a binding site for the Niemann-Pick C1 (NPC1) receptor. NPC1 binding to cleaved GP1 is required for entry. How this interaction translates to GP2 domain-mediated fusion of viral and endosomal membranes is not known. Here, using a bulk fluorescence dequenching assay and single-molecule Förster resonance energy transfer (smFRET)-imaging, we found that acidic pH, Ca2+, and NPC1 binding synergistically induce conformational changes in GP2 and permit virus-liposome lipid mixing. Acidic pH and Ca2+ shifted the GP2 conformational equilibrium in favor of an intermediate state primed for NPC1 binding. Glycan cap cleavage on GP1 enabled GP2 to transition from a reversible intermediate to an irreversible conformation, suggestive of the postfusion 6-helix bundle; NPC1 binding further promoted transition to the irreversible conformation. Thus, the glycan cap of GP1 may allosterically protect against inactivation of EBOV by premature triggering of GP2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034923PMC
http://dx.doi.org/10.1371/journal.pbio.3000626DOI Listing

Publication Analysis

Top Keywords

npc1 binding
16
glycan cap
12
conformational changes
8
ebola virus
8
membrane fusion
8
fusion machine
8
acidic ca2+
8
irreversible conformation
8
binding
6
npc1
5

Similar Publications

Decoding the blueprint of receptor binding by filoviruses through large-scale binding assays and machine learning.

Cell Host Microbe

January 2025

Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA. Electronic address:

Evidence suggests that bats are important hosts of filoviruses, yet the specific species involved remain largely unidentified. Niemann-Pick C1 (NPC1) is an essential entry receptor, with amino acid variations influencing viral susceptibility and species-specific tropism. Herein, we conducted combinatorial binding studies with seven filovirus glycoproteins (GPs) and NPC1 orthologs from 81 bat species.

View Article and Find Full Text PDF

The multiple facets of Rab proteins modulating the cellular distribution of cholesterol from the late endosomal compartment.

Biochim Biophys Acta Mol Cell Res

January 2025

School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia. Electronic address:

Cholesterol is an essential lipid that ensures the functional integrity of mammalian cells. Most cells acquire cholesterol via endocytosis of low-density lipoproteins (LDL). Upon reaching late endosomes/lysosomes (LE/Lys), incoming ligands, including LDL-derived cholesterol, are distributed to other organelles.

View Article and Find Full Text PDF

NPC1 controls TGFBR1 stability in a cholesterol transport-independent manner and promotes hepatocellular carcinoma progression.

Nat Commun

January 2025

State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.

Niemann-Pick disease type C protein 1 (NPC1), classically associated with cholesterol transport and viral entry, has an emerging role in cancer biology. Here, we demonstrate that knockout of Npc1 in hepatocytes attenuates hepatocellular carcinoma (HCC) progression in both DEN (diethylnitrosamine)-CCl induced and MYC-driven HCC mouse models. Mechanistically, NPC1 significantly promotes HCC progression by modulating the TGF-β pathway, independent of its traditional role in cholesterol transport.

View Article and Find Full Text PDF

Lysosomal damage due to cholesterol accumulation triggers immunogenic cell death.

Autophagy

December 2024

Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France.

Cholesterol serves as a vital lipid that regulates numerous physiological processes. Nonetheless, its role in regulating cell death processes remains incompletely understood. In this study, we investigated the role of cholesterol trafficking in immunogenic cell death.

View Article and Find Full Text PDF

LRRK2 and RAB8A regulate cell death after lysosomal damage in macrophages through cholesterol-related pathways.

Neurobiol Dis

November 2024

Neuroscience, Molecular and Single Cell Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark. Electronic address:

Activating mutations in Leucine Rich Repeat Kinase 2 (LRRK2) are among the most common genetic causes of Parkinson's disease (PD). The mechanistic path from LRRK2 mutations to PD is not established, but several lines of data suggest that LRRK2 modulation of lysosomal function is involved. It has previously been shown that LRRK2 is recruited to lysosomes upon lysosomal damage leading to increased phosphorylation of its RAB GTPase substrates in macrophage-derived RAW 264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!