Genetic perturbation screens using RNA interference (RNAi) have been conducted successfully to identify host factors that are essential for the life cycle of bacteria or viruses. So far, most published studies identified host factors primarily for single pathogens. Furthermore, often only a small subset of genes, e.g., genes encoding kinases, have been targeted. Identification of host factors on a pan-pathogen level, i.e., genes that are crucial for the replication of a diverse group of pathogens has received relatively little attention, despite the fact that such common host factors would be highly relevant, for instance, for devising broad-spectrum anti-pathogenic drugs. Here, we present a novel two-stage procedure for the identification of host factors involved in the replication of different viruses using a combination of random effects models and Markov random walks on a functional interaction network. We first infer candidate genes by jointly analyzing multiple perturbations screens while at the same time adjusting for high variance inherent in these screens. Subsequently the inferred estimates are spread across a network of functional interactions thereby allowing for the analysis of missing genes in the biological studies, smoothing the effect sizes of previously found host factors, and considering a priori pathway information defined over edges of the network. We applied the procedure to RNAi screening data of four different positive-sense single-stranded RNA viruses, Hepatitis C virus, Chikungunya virus, Dengue virus and Severe acute respiratory syndrome coronavirus, and detected novel host factors, including UBC, PLCG1, and DYRK1B, which are predicted to significantly impact the replication cycles of these viruses. We validated the detected host factors experimentally using pharmacological inhibition and an additional siRNA screen and found that some of the predicted host factors indeed influence the replication of these pathogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034926 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1007587 | DOI Listing |
Microbiome
January 2025
Department of Medicine, University of Toronto, Toronto, Canada.
Background: Genital inflammation increases HIV susceptibility and is associated with the density of pro-inflammatory anaerobes in the vagina and coronal sulcus. The penile urethra is a critical site of HIV acquisition, although correlates of urethral HIV acquisition are largely unknown. While Streptococcus mitis is a consistent component of the urethral flora, the presence of Gardnerella vaginalis has been linked with prior penile-vaginal sex and urethral inflammation.
View Article and Find Full Text PDFJ Vet Med Sci
January 2025
Laboratory of Global Animal Resource Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo.
Fasciola-induced fascioliasis is a zoonotic disease with significant health and economic impacts on humans and livestock. Freshwater Lymnaea snails serve as intermediate hosts, contributing to the increasing prevalence of fascioliasis in cattle in coastal areas. The salinity tolerance of Lymnaea snails was investigated along with their distribution and Fasciola infection rates in both snails and grazing cattle in Ben Tre, Tra Vinh, and Soc Trang provinces in Mekong Delta, Vietnam, where seawater reversely enters into the paddy field during the dry season.
View Article and Find Full Text PDFCrit Rev Biotechnol
January 2025
Department of Life Sciences, Shiv Nadar Institution of Eminence (Deemed to be University), Gautam Buddha Nagar, Uttar Pradesh, India.
The global escalation in tuberculosis (TB) cases accompanied by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of ( emphasizes the critical requirement for novel potent drugs. The demonstrates extraordinary adaptability, thriving in diverse conditions, and always finds itself in win-win situations regardless of whether the environment is favorable or unfavorable; no matter the magnitude of the challenge, it can endure and survive. This review aims to uncover the role of multiple stress sensors of that assist bacteria in remaining viable within the host for years against various physiological stresses offered by the host.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Statistics, School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
Motivation: Numerous microbiome studies have revealed significant associations between the microbiome and human health and disease. These findings have motivated researchers to explore the causal role of the microbiome in human complex traits and diseases. However, the complexities of microbiome data pose challenges for statistical analysis and interpretation of causal effects.
View Article and Find Full Text PDFInsect Biochem Mol Biol
January 2025
Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
Chemical signals are pivotal in establishing tritrophic interactions among host plants, herbivorous insects, and natural enemies. Previous studies have shown that evolutionarily conserved MaltOBPs in Monochamus alternatus and DhelOBPs in Dastarcus helophoroides contribute to the establishment of pine -pest - natural enemy tritrophic interactions by recognizing the same volatile emitted by the host during crucial developmental stages. We hypothesized that the transcriptional regulatory mechanisms of evolutionarily conserved OBPs respectively from pests and enemies are similar.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!