All-solid-state batteries (ASSBs) present a promising route toward safe and high-power battery systems in order to meet the future demands in the consumer and automotive market. Composite cathodes are one way to boost the energy density of ASSBs compared to thin-film configurations. In this manuscript, we investigate composites consisting of β-LiPS (β-LPS) solid electrolyte and high-energy Li(NiMnCo)O (NMC622). The fabricated cells show a good cycle life with a satisfactory capacity retention. Still, the cathode utilization is below the values reported in the literature for systems with liquid electrolytes. The common understanding is that interface processes between the active material and solid electrolyte are responsible for the reduced performance. In order to throw some light on this topic, we perform 3D microstructure-resolved simulations on virtual samples obtained via X-ray tomography. Through this approach, we are able to correlate the composite microstructure with electrode performance and impedance. We identify the low electronic conductivity in the fully lithiated NMC622 as material inherent restriction preventing high cathode utilization. Moreover, we find that geometrical properties and morphological changes of the microstructure interact with the internal and external interfaces, significantly affecting the capacity retention at higher currents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b21404DOI Listing

Publication Analysis

Top Keywords

all-solid-state batteries
8
solid electrolyte
8
capacity retention
8
cathode utilization
8
analysis interfacial
4
interfacial effects
4
effects all-solid-state
4
batteries thiophosphate
4
thiophosphate solid
4
solid electrolytes
4

Similar Publications

All-solid-state lithium metal batteries are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of lithium dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes.

View Article and Find Full Text PDF

Impact of electric vehicle battery recycling on reducing raw material demand and battery life-cycle carbon emissions in China.

Sci Rep

January 2025

Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, Guangdong Province, People's Republic of China.

The rapid growth of electric vehicles (EVs) in China challenges raw material demand. This study evaluates the impact of recycling and reusing EV batteries on reducing material demand and carbon emissions. Integrating a national-level vehicle stock turnover model with life-cycle carbon emission assessment, we found that replacing nickel-cobalt-manganese batteries with lithium iron phosphate batteries with battery recycling can reduce lithium, cobalt, and nickel demand between 2021 and 2060 by up to 7.

View Article and Find Full Text PDF

Silicon is widely recognized as a promising anode material for all-solid-state batteries (ASSBs) due to exceptional specific capacity, abundant availability, and environmental sustainability. However, the considerable volume expansion and particle fragmentation of Si during cycling lead to significant performance degradation, limiting its practical application. Herein, the development of a pre-lithiated Si-based composite anode (c-LiSi) is presented, designed to address the key challenges faced by Si-based anodes, namely severe volume changes and low electrochemical stability.

View Article and Find Full Text PDF

All-solid-state Li-S batteries with fast solid-solid sulfur reaction.

Nature

January 2025

Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, China.

With promises for high specific energy, high safety and low cost, the all-solid-state lithium-sulfur battery (ASSLSB) is ideal for next-generation energy storage. However, the poor rate performance and short cycle life caused by the sluggish solid-solid sulfur redox reaction (SSSRR) at the three-phase boundaries remain to be solved. Here we demonstrate a fast SSSRR enabled by lithium thioborophosphate iodide (LBPSI) glass-phase solid electrolytes (GSEs).

View Article and Find Full Text PDF

Design strategies and performance enhancements of PVDF-based flexible electrolytes for high-performance all-solid-state lithium metal batteries.

Nanoscale

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.

Lithium metal is considered one of the most promising anode materials for lithium batteries due to its high theoretical specific capacity (3860 mA h g) and low redox potential (-3.04 V). However, uncontrolled lithium dendrite growth and severe interfacial side reactions during cycling result in poor performance and safety risks, significantly limiting its practical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!