Recent advances in molecular dynamics (MD) simulations have made it possible to examine the behavior of large charged droplets that contain analytes such as proteins or polymers, thereby providing insights into electrospray ionization (ESI) mechanisms. In the present study, we use this approach to investigate the release of polylactide (PLA) ions from water/acetonitrile ESI droplets. We found that cationized gaseous PLA ions can be formed via various competing pathways. Some MD runs showed extrusion and subsequent separation of polymer chains from the droplet, as envisioned by the chain ejection model (CEM). On other occasions the PLA chains remained inside the droplets and were released after solvent evaporation to dryness, consistent with the charge residue model (CRM). Following their release from ESI droplets, the nascent gaseous PLA ions were subjected to structural relaxation for several μs in vacuo. The MD conformations generated in this way for various PLA charge states compared favorably to experimental results obtained by ion mobility spectrometry-mass spectrometry (IMS-MS). The structures of all PLA ions evolved during relaxation in the gas phase. However, some macroion species retained features that resembled their nascent structures. For this subset of ions, the IMS-MS response appears to be strongly correlated with the ESI release mechanism (CEM vs. CRM). The former favored extended structures, whereas the latter preferentially generated compact conformers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp06391a | DOI Listing |
J Mater Chem B
January 2025
Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Magnesium oxide (MgO) is known for its bioactivity and osteoconductivity when incorporated into biodegradable poly(lactic acid) (PLA), whereas the weak interfacial bonding between MgO microspheres (mMPs) and PLA often leads to suboptimal composite properties with uncontrollable functionality. Conjugation of mMPs with PLA may offer a good way to enhance their compatibility. In this study, we systematically investigated two grafting techniques, solution grafting (Sol) and melt grafting (Mel), to decorate poly (D-lactic acid) (PDLA) on mMPs pre-treated by prioritized hydration to obtain Sol MPs and Mel MPs, in order to optimize the grafting efficiency and improve their controllability in the properties including the crystal structure and surface morphology.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Psychiatry, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
Two novel nitrogen hybrid fluorescent sensors based on the ESIPT mechanism were successfully synthesized for the detection of fluoride ions (F), and they exhibit high sensitivity and selectivity with a fast response. The detection limits even reach the parts per billion level. With the addition of F, both sensors showed a ratiometric fluorescence change with a large Stokes shift.
View Article and Find Full Text PDFBiopolymers
March 2025
Centro de Investigación en Química Aplicada, Saltillo, Coahuila, Mexico.
Exploring new ecological and simultaneous processes to modify wood fibers (WF) by-products is a required pathway toward circular economy and sustainability. Thus, plasma-activated water (PAW) and ultrasound (U) were employed as alternative methods to modify WF in a continuous process. Such treatments promoted the etching and cavities on the WF surface that destabilized the hydrogen bonds of the hemicellulose and lignin molecules, increasing the cellulose fraction.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, United States.
Solid-state polymer electrolytes (SPEs) are increasingly favored over liquid electrolytes for emerging energy storage devices due to their safety features, enhanced stability, and multifunctionality. Minor solvents (such as water) are often introduced unintentionally or intentionally into SPEs. Although it can significantly affect SPEs' electrochemical and mechanical properties, the fundamental role of such solvent content has rarely been studied.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry, Yanbian University, Yanji, 133002, Jilin, China. Electronic address:
Exosomes have emerged as a powerful biomarker for early cancer diagnosis, however, accurately detecting cancer-derived exosomes in biofluids remains a crucial challenge. In this study, we present a novel label-free electrochemical biosensor utilizing titanium dioxide nanotube array films (TiONTAs) for the sensitive detection of exosomes in complex biological samples. This innovative biosensor takes advantage of the excellent electrochemical properties of TiONTAs and their specific interactions with the phosphate groups of exosomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!