Kinetics-controlled design principles for two-dimensional open lattices using atom-mimicking patchy particles.

Nanoscale

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China and Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China.

Published: February 2020

The design and discovery of new two-dimensional materials with desired structures and properties are always one of the most fundamental goals in materials science. Here we present an atom-mimicking design concept to achieve direct self-assembly of two-dimensional low-coordinated open lattices using three-dimensional patchy particle systems. Besides honeycomb lattices, a new type of two-dimensional square-octagon lattice is obtained through rational design of the patch configuration of soft three-patch particles. However, unexpectedly the building blocks with thermodynamically favoured patch configuration cannot form square-octagon lattices in our simulations. We further reveal the kinetic mechanisms controlling the formation of the honeycomb and square-octagon lattices. The results indicate that the kinetically favoured intermediates play a critical role in determining the structure of obtained open lattices. This kinetics-controlled design principle provides a particularly effective and extendable framework to construct other novel open lattice structures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr09656fDOI Listing

Publication Analysis

Top Keywords

open lattices
12
kinetics-controlled design
8
patch configuration
8
square-octagon lattices
8
lattices
6
design principles
4
two-dimensional
4
principles two-dimensional
4
open
4
two-dimensional open
4

Similar Publications

This study presents a comprehensive workflow for developing and deploying Multi-Layer Perceptron (MLP)-based soft sensors on embedded FPGAs, addressing diverse deployment objectives. The proposed workflow extends our prior research by introducing greater model adaptability. It supports various configurations-spanning layer counts, neuron counts, and quantization bitwidths-to accommodate the constraints and capabilities of different FPGA platforms.

View Article and Find Full Text PDF

A Scanning Photoelectron Microscopy (SPEM) experiment has been applied to ZnO:N films deposited by Atomic Layer Deposition (ALD) under O-rich conditions and post-growth annealed in oxygen at 800 °C. spatial resolution (130 nm) allows for probing the electronic structure of single column of growth. The samples were cleaved under ultra-high vacuum (UHV) conditions to open atomically clean cross-sectional areas for SPEM experiment.

View Article and Find Full Text PDF

The adoption of pultruded glass fibre-reinforced polymer (pGFRP) composites as a substitute for traditional wooden cross-arms in high transmission towers represents a relatively novel approach. These materials were selected for their high strength-to-weight ratio and lightweight properties. Despite various studies focusing on structures improvement, there still have a significant gap in understanding the deformation characteristics of full-scale cross-arms under actual operational loads.

View Article and Find Full Text PDF

The concept of non-Hermiticity has expanded the understanding of band topology, leading to the emergence of counter-intuitive phenomena. An example is the non-Hermitian skin effect (NHSE), which involves the concentration of eigenstates at the boundary. However, despite the potential insights that can be gained from high-dimensional non-Hermitian quantum systems in areas such as curved space, high-order topological phases and black holes, the realization of this effect in high dimensions remains unexplored.

View Article and Find Full Text PDF

Reducing Disorder in PbTe Nanowires for Majorana Research.

Nano Lett

January 2025

State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.

Material challenges are the key issue in Majorana research, where surface disorder constrains device performance. Here, we tackle this challenge by embedding PbTe nanowires within a lattice-constant-matched crystal. The wire edges are shaped by self-organized growth instead of lithography, resulting in nearly atomically flat facets along both cross-sectional and longitudinal directions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!