Staphylococcus sp. as Gram-positive and Escherichia coli as Gram-negative are bacterial pathogens and can cause primary bloodstream infections and food poisoning. Coagulation, flocculation, and sedimentation processes could be a reliable treatment for bacterial removal because suspended, colloidal, and soluble particles can be removed. Chemical coagulants, such as alum, are commonly used. However, these chemical coagulants are not environmentally friendly. This present study evaluated the effectiveness of coagulation, flocculation, and sedimentation processes for removing Staphylococcus sp. and E. coli using diatomite with standard jar test equipment at different pH values. Staphylococcus sp. demonstrated 85.61% and 77.23% significant removal in diatomite and alum, respectively, at pH 5. At pH 7, the removal efficiency decreased to 79.41% and 64.13% for Staphylococcus sp. and E. coli, respectively. At pH 9, there was a decrease in Staphylococcus sp. after adding diatomite or alum compared with that of E. coli. The different removal efficiencies of the Gram-positive and Gram-negative bacteria could be owing to the membrane composition and different structures in the bacteria. This study indicates that diatomite has higher efficiency in removing bacteria at pH 5 and can be considered as a potential coagulant to replace alum for removing bacteria by the coagulation process.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2019.433DOI Listing

Publication Analysis

Top Keywords

coagulation flocculation
12
flocculation sedimentation
12
sedimentation processes
12
removal efficiency
8
gram-positive gram-negative
8
gram-negative bacteria
8
chemical coagulants
8
staphylococcus coli
8
diatomite alum
8
removing bacteria
8

Similar Publications

Unraveling the mechanisms underlying AOM-induced deterioration of the settling performance of algal floc.

Water Res

January 2025

School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China. Electronic address:

The influence of algal organic matter (AOM) on the settling performance of algal flocs remains poorly understood. To address this, we employed fractionation techniques based on molecular weight to isolate different AOM fractions and analyzed their effects on floc structure and settling performance. This involved comparing the concentrations, compositions, potentials, and functional groups of organic matter before and after coagulation-sedimentation.

View Article and Find Full Text PDF

Advanced micropollutant and phosphorus removal with superfine powdered activated carbon and pile cloth media filtration.

Water Res

December 2024

Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Germany. Electronic address:

Organic micropollutants (OMP) are ubiquitous in aquatic ecosystems and have a proven negative impact on the environment and drinking water resources. To remove OMP from municipal wastewater, the use of superfine Powdered Activated Carbon (sPAC) (d = 1.0 µm) compared to Powdered Activated Carbon (PAC) (d = 30.

View Article and Find Full Text PDF

Polysilicate-ferric-calcium-lanthanum (PSFCL) was synthesized through a co-polymerization method in order to treat the yellow phosphorus wastewater. Its morphology, composition and functional group were analyzed by X-ray Diffraction (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Scanning Electron Microscopic (SEM) and X-ray Photoelectron Spectroscopy (XPS), respectively. The optimization of the flocculant was also investigated, including La/Si molar ratio, pH, agitation time, dosage and sedimentation time.

View Article and Find Full Text PDF

This study presents an eco-friendly approach to treat contaminated and turbid water through the development of cryogels loaded with bioactive compounds derived from Scenedesmus algal extract (ScAE) based on chitosan/poly(vinyl alcohol) (Cs/PVA) matrix. Scenedesmus sp., a green microalga known for its bioactive properties, was cultivated and processed to obtain extracts with coagulation potential.

View Article and Find Full Text PDF

The gastric digestion behavior of different commercial Stage 1 infant formulae (for 0-6 months) with different formulation backgrounds was investigated using an dynamic infant human gastric simulator (iHGS). The microstructural arrangements of the protein and lipid, colloidal stability and protein hydrolysis during digestion were elucidated. During gastric digestion, casein-dominant formulations showed a higher extent of aggregation due to their high proportion of casein micelles that underwent coagulation upon acidification and via the action of pepsin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!