Background: Accumulating evidence shows that long noncoding RNAs (lncRNAs) are important regulator molecules involved in diverse biological processes. Acquired drug resistance is a major challenge in the clinical treatment of glioblastoma (GBM), and lncRNAs have been shown to play a role in chemotherapy resistance. However, the underlying mechanisms by which lncRNA mediates TMZ resistance in GBM remain poorly characterized.
Methods: Quantitative reverse transcription PCR (qRT-PCR) and fluorescence in situ hybridization assays were used to detect small nucleolar RNA host gene 12 (SNHG12) levels in TMZ-sensitive and TMZ-resistant GBM cells and tissues. The effects of SNHG12 on TMZ resistance were investigated through in vitro assays (western blots, colony formation assays, flow cytometry assays, and TUNEL assays). The mechanism mediating the high expression of SNHG12 in TMZ-resistant cells and its relationships with miR-129-5p, mitogen-activated protein kinase 1 (MAPK1), and E2F transcription factor 7 (E2F7) were determined by bioinformatic analysis, bisulfite amplicon sequencing, methylation-specific PCR, dual luciferase reporter assays, chromatin immunoprecipitation assays, RNA immunoprecipitation assays, immunofluorescence, qRT-PCR, and western blot. For in vivo experiments, an intracranial xenograft tumor mouse model was used to investigate SNHG12 function.
Results: SNHG12 was upregulated in TMZ-resistant cells and tissues. Overexpression of SNHG12 led to the development of acquired TMZ resistance, while knockdown of SNHG12 restored TMZ sensitivity. An abnormally low level of DNA methylation was detected within the promoter region of SNHG12, and loss of DNA methylation made this region more accessible to the Sp1 transcription factor (SP1); this indicated that methylation and SP1 work together to regulate SNHG12 expression. In the cytoplasm, SNHG12 served as a sponge for miR-129-5p, leading to upregulation of MAPK1 and E2F7 and endowing the GBM cells with TMZ resistance. Disinhibition of MAPK1 regulated TMZ-induced cell apoptosis and the G1/S cell cycle transition by activating the MAPK/ERK pathway, while E2F7 dysregulation was primarily associated with G1/S cell cycle transition. Clinically, SNHG12 overexpression was associated with poor survival of GBM patients undergoing TMZ treatment.
Conclusion: Our results suggest that SNHG12 could serve as a promising therapeutic target to surmount TMZ resistance, thereby improving the clinical efficacy of TMZ chemotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011291 | PMC |
http://dx.doi.org/10.1186/s12943-020-1137-5 | DOI Listing |
Neurooncol Adv
November 2024
Huntsman Cancer Institute, Salt Lake City, UT, USA.
Background: Glioblastoma (GBM) has a median survival of <2 years. Pexidartinib (PLX3397) is a small-molecule inhibitor of CSF1R, KIT, and oncogenic FTL3, which are implicated in GBM treatment resistance. Results from glioma models indicate that combining radiation therapy (RT) and pexidartinib reduces radiation resistance.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
December 2024
Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
Background: Glioblastoma multiforme (GBM) is an aggressive brain tumor that primarily affects adults. The Stupp Protocol, which includes surgical resection, chemoradiation, and monotherapy with temozolomide (TMZ), is the standard treatment regimen for GBM. However, repeated use of TMZ leads to resistance in GBM cells, resulting in a poor prognosis for patients.
View Article and Find Full Text PDFPhytother Res
December 2024
Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, China.
Glioma is recognized as one of the most lethal and aggressive brain tumors. Although the standard-of-care treatment for glioblastoma (GBM) involves maximal surgical resection and temozolomide (TMZ) chemotherapy, the discovery of novel anti-tumor agents from nature sources is an effective strategy for glioma treatment. In this study, we conducted a screening process to identify the bisindole alkaloid melodinine J (MDJ) from Melodinus tenuicaudatus.
View Article and Find Full Text PDFClinics (Sao Paulo)
December 2024
Department of Emergency, Zhejiang Jinhua Guangfu Tumor Hospital, Zhejiang, PR China.
Objective: Based on Toll Like Receptor 4 (TLR4)/Nuclear Factor-κB (NF-κB) Exploring the effects of Licochalcone A (LCA) on the proliferation, invasion, and drug resistance of glioma cells through signaling pathways.
Methods: Cultivate human glioma cell line U251 in vitro, induce drug-resistant cell line U251/TMZ with Temozolomide (TMZ), and validate the results. Different concentrations of licorice chalcone A were used to treat U251 cells and U251/TMZ cells, and were named as control group, low-dose group, medium-dose group, and high-dose group, respectively.
Cancer Cell Int
December 2024
Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 838 North Guangzhou Ave, Guangzhou, 510515, China.
Background: Glioblastoma multiforme (GBM) represents the most prevalent form of primary malignant tumor within the central nervous system. The emergence of resistance to radiotherapy and chemotherapy represents a significant impediment to advancements in glioma treatment.
Methods: We established temozolomide (TMZ)-resistant GBM cell lines by chronically exposing U87MG cell lines to TMZ, and dimethyl sulfoxide (DMSO) was used as placebo control.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!