Background: Chromosomal architecture, which is constituted by chromatin loops, plays an important role in cellular functions. Gene expression and cell identity can be regulated by the chromatin loop, which is formed by proximal or distal enhancers and promoters in linear DNA (1D). Enhancers and promoters are fundamental non-coding elements enriched with transcription factors (TFs) to form chromatin loops. However, the specific cooperation of TFs involved in forming chromatin loops is not fully understood.

Results: Here, we proposed a method for investigating the cooperation of TFs in four cell lines by the integrative analysis of DNA sequences, ChIP-Seq and ChIA-PET data. Results demonstrate that the interaction of enhancers and promoters is a hierarchical and dynamic complex process with cooperative interactions of different TFs synergistically regulating gene expression and chromatin structure. The TF cooperation involved in maintaining and regulating the chromatin loop of cells can be regulated by epigenetic factors, such as other TFs and DNA methylation.

Conclusions: Such cooperation among TFs provides the potential features that can affect chromatin's 3D architecture in cells. The regulation of chromatin 3D organization and gene expression is a complex process associated with the hierarchical and dynamic prosperities of TFs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226942PMC
http://dx.doi.org/10.1186/s12864-019-5535-2DOI Listing

Publication Analysis

Top Keywords

chromatin loops
12
gene expression
12
enhancers promoters
12
cooperation tfs
12
transcription factors
8
analysis dna
8
dna sequences
8
sequences chip-seq
8
chip-seq chia-pet
8
chia-pet data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!