NIR-cleavable drug adducts of gold nanostars for overcoming multidrug-resistant tumors.

Biomater Sci

Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan, Republic of China. and Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan, Republic of China.

Published: March 2020

An aptamer-conjugated gold nanostar (dsDDA-AuNS) has been developed for targeting nucleolin present in both tumor cells and tumor vasculature for conducting a drug-resistant cancer therapy. AuNS with its strong absorption in the near-infrared (NIR) region was assembled with a layer of the anti-nucleolin aptamer AS1411. An anticancer drug, namely doxorubicin (DOX), was specifically conjugated on deoxyguanosine residues employing heat and acid labile methylene linkages. In response to NIR irradiation, dsDDA-AuNS allowed on-demand therapeutics. AS1411 played an active role in drug cargo-nucleus interactions, enhancing drug accumulation in the nuclei of drug-resistant breast cancer cells. The intravenous injection of dsDDA-AuNS allowed higher drug accumulation in drug-resistant tumors over naked drugs, leading to greater therapeutic efficacy even at a 54-fold less equivalent drug dose. The in vivo triggered release of DOX from dsDDA-AuNS was achieved by NIR irradiation, resulting in simultaneous photothermal and chemotherapeutic actions, yielding superior tumor growth inhibition than those obtained from either type of monotherapy for overcoming drug resistance in cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9bm01813aDOI Listing

Publication Analysis

Top Keywords

nir irradiation
8
dsdda-auns allowed
8
drug accumulation
8
drug
6
nir-cleavable drug
4
drug adducts
4
adducts gold
4
gold nanostars
4
nanostars overcoming
4
overcoming multidrug-resistant
4

Similar Publications

With the progress of atherosclerosis (AS), the arterial lumen stenosis and compact plaque structure, the thickening intima and the narrow gaps between endothelial cells significantly limit the penetration efficiency of nanoprobe to plaque, weakening the imaging sensitivity and therapy efficiency. Thus, in this study, a HO-NIR dual-mode nanomotor, Gd-doped mesoporous carbon nanoparticles/Pt with rapamycin (RAPA) loading and AntiCD36 modification (Gd-MCNs/Pt-RAPA-AC) was constructed. The asymmetric deposition of Pt on Gd-MCNs catalyzed HO at the inflammatory site to produce O, which could promote the self-motion of the nanomotor and ease inflammation microenvironment of AS plaque.

View Article and Find Full Text PDF

Calcination-Induced Tight Nano-Heterointerface for Highly Effective Eradication of Rib Fracture-Related Infection by Near-Infrared Irradiation.

ACS Appl Mater Interfaces

January 2025

School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.

Rib fracture-related infection is a challenging complication of thoracic trauma due to the difficulty of treating it with antibiotics alone and the need for a second operation to remove the infected fixator and sterilize the surrounding infected tissue. In this study, inspired by the photocatalytic performance of and ion release from silver-based materials, including AgPO and AgS, a hybrid AgPO-AgS heterojunction was prepared based on anion exchange and a one-step calcination process to design a nonantibiotic coating aimed at preventing and treating rib fracture-related infection with short-term 808 nm near-infrared irradiation. Calcination at 250 °C enhanced the inductive effect of the phosphate radical and led to the formation of a tight nanoheterogeneous interface between AgPO and AgS, thereby promoting interfacial electron transfer and reducing the recombination of photogenerated carriers.

View Article and Find Full Text PDF

Albumin-Energized NIR-II Cyanine Dye for Fluorescence/Photoacoustic/Photothermal Multi-Modality Imaging-Guided Tumor Homologous Targeting Photothermal Therapy.

J Med Chem

January 2025

Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.

Endowing cyanine dyes with hydrophilicity, long blood circulation, tumor targeting, and robust therapeutic efficacy in the second near-infrared (NIR-II) window is challenging for cancer treatment. Herein, we develop cancer cell membrane-coated albumin-NIR-II cyanine dye assemblies, denoted as LZ-1105@HAm, to optimize the photophysical properties of cyanine dyes in aqueous solution for NIR-II fluorescence (FL)/photoacoustic (PA)/photothermal (PT) multimodality imaging-guided tumor homologous targeting photothermal therapy. LZ-1105@HAm exhibits good hydrophilicity, extends the half-life of blood circulation from 0.

View Article and Find Full Text PDF

Dual-driven biodegradable nanomotors for enhanced cellular uptake.

J Mater Chem B

January 2025

Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

The healing of bacteria-infected wounds has long posed a significant clinical challenge. Traditional hydrogel wound dressings often lack self-healing properties and effective antibacterial characteristics, making wound healing difficult. In this study, a bioactive small molecule cross-linking agent 4-FPBA/Lys/4-FPBA (FLF) composed of 4-formylphenylboronic acid (4-FPBA) and lysine (Lys) was utilized to cross-link guar gum (GG) and a tannic acid/iron (TA/Fe) chelate through multiple dynamic bonds, leading to the formation of a novel self-healing hydrogel dressing GG-FLF/TA/Fe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!