A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimizing Lignosulfonic Acid-Grafted Polyaniline as a Hole-Transport Layer for Inverted CHNHPbI Perovskite Solar Cells. | LitMetric

Optimizing Lignosulfonic Acid-Grafted Polyaniline as a Hole-Transport Layer for Inverted CHNHPbI Perovskite Solar Cells.

ACS Omega

Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, Arkansas 72204, United States.

Published: February 2020

A conducting polymer of lignosulfonic acid-grafted, polyaniline-doped camphorsulfonic acid (LS-PANI-CSA), created via a low-temperature solution process, has been explored as an efficient hole-transport layer (HTL) for inverted single cation-anion CHNHPbI perovskite solar cells. The performance of the solar cell was optimized in this study by tuning the morphology and work function of LS-PANI-CSA films using dimethylsulfoxide (DMSO) as a solvent in treatment. Results showed that DMSO washing enhanced the electronic properties of the LS-PANI-CSA film and increased its hydrophobicity, which is very important for perovskite growth. The perovskite active layer deposited onto the DMSO-treated LS-PANI-CSA layer had higher crystallinity with large grain sizes (>5 μm), more uniform and complete surface coverage, and very low pinhole density and PbI residues compared to untreated LS-PANI-CSA. These enhancements result in higher device performance and stability. Using DMSO-treated LS-PANI-CSA as an HTL at 15 nm of thickness, a maximum 10.8% power conversion efficiency was obtained in ITO/LS-PANI-CSA/MAPbI/PCBM/BCP/Ag inverted-device configurations. This was a significant improvement compared to 5.18% for devices based on untreated LS-PANI-CSA and a slight improvement over PEDOT:PSS-based devices with 9.48%. Furthermore, the perovskite based on treated LS-PANI-CSA showed the higher stability compared to both untreated LS-PANI-CSA and PEDOT:PSS HTL-based devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003196PMC
http://dx.doi.org/10.1021/acsomega.9b03451DOI Listing

Publication Analysis

Top Keywords

untreated ls-pani-csa
12
ls-pani-csa
9
lignosulfonic acid-grafted
8
hole-transport layer
8
chnhpbi perovskite
8
perovskite solar
8
solar cells
8
dmso-treated ls-pani-csa
8
compared untreated
8
perovskite
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!