Cyanide is a toxic compound widely used in mining and jewelry industries, as well as in the synthesis of many different chemicals. Cyanide toxicity derives from its high affinity for metals, which causes inhibition of relevant metalloenzymes. However, some cyanide-degrading microorganisms like the alkaliphilic bacterium CECT5344 may detoxify hazardous industrial wastewaters that contain elevated cyanide and metal concentrations. Considering that iron availability is strongly reduced in the presence of cyanide, mechanisms for iron homeostasis should be required for cyanide biodegradation. Previous omic studies revealed that in the presence of a cyanide-containing jewelry residue the strain CECT5344 overproduced the dihydrodipicolinate synthase DapA1, a protein involved in lysine metabolism that also participates in the synthesis of dipicolinates, which are excellent metal chelators. In this work, a mutant of CECT5344 has been generated and characterized. This mutant showed reduced growth and cyanide consumption in media with the cyanide-containing wastewater. Intracellular levels of metals like iron, copper and zinc were increased in the mutant, especially in cells grown with the jewelry residue. In addition, a differential quantitative proteomic analysis by LC-MS/MS was carried out between the wild-type and the mutant strains in media with jewelry residue. The mutation in the gene altered the expression of several proteins related to urea cycle and metabolism of arginine and other amino acids. Additionally, the mutant showed increased levels of the global nitrogen regulator PII and the glutamine synthetase. This proteomic study has also highlighted that the DapA1 protein is relevant for cyanide resistance, oxidative stress and iron homeostasis response, which is mediated by the ferric uptake regulator Fur. DapA1 is required to produce dipicolinates that could act as iron chelators, conferring protection against oxidative stress and allowing the regeneration of Fe-S centers to reactivate cyanide-damaged metalloproteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989483PMC
http://dx.doi.org/10.3389/fmicb.2020.00028DOI Listing

Publication Analysis

Top Keywords

iron homeostasis
12
jewelry residue
12
dihydrodipicolinate synthase
8
synthase dapa1
8
cyanide
8
alkaliphilic bacterium
8
bacterium cect5344
8
dapa1 protein
8
oxidative stress
8
iron
6

Similar Publications

Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.

View Article and Find Full Text PDF

Background: Regenerative medicine researches have shown that mesenchymal stem cells (MSCs) may be an effective treatment method for premature ovarian insufficiency (POI). However, the efficacy of MSCs is still limited.

Purpose: This study aims to explain whether salidroside and MSCs combination is a therapeutic strategy to POI and to explore salidroside-enhanced MSCs inhibiting ferroptosis via Keap1/Nrf2/GPX4 signaling.

View Article and Find Full Text PDF

Background: Ferroptosis is a cell death mode caused by excessive accumulation of lipid peroxides caused by disturbance of intracellular metabolic pathway, which is closely related to iron and cholesterol metabolism homeostasis. Its regulation within the hypoxic metabolic tumor microenvironment (TME) has the potential to improve the effectiveness of tumor immunotherapy. The predictive role of ferroptosis in gastric cancer (GC) hypoxia TME, particularly in relation to TME immune cell infiltration, has not been fully explained.

View Article and Find Full Text PDF

Ferroptosis has been characterised by disruption of the cell membrane through iron-related lipid peroxidation. However, regulation of iron homeostasis in lung cancer cells that are resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) remains unclear. Transcriptome analysis identified a significant downregulation of apoptosis-associated tyrosine kinase (AATK) mRNA expression in gefitinib-resistant PC9 (PC9-GR) cells, which were found to be more susceptible to ferroptosis inducers.

View Article and Find Full Text PDF

Angiotensin II (Ang II) is the most active peptide hormone produced by the renin-angiotensin system (RAS). Genetic deletion of genes that ultimately restrict Ang II formation has been shown to result in marked anemia in mice. In this study, adult mice with a genetic deletion of the RAS precursor protein angiotensinogen (Agt-KO) were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!