Development of a Sensitive Bioreporter Without Antibiotic Markers for Detecting Bioavailable Copper in Water Environments.

Front Microbiol

Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.

Published: January 2020

The whole-cell bioreporters based on the -operon sensing elements have been proven specifically useful in the assessment of bioavailable copper ions in water environments. In this study, a series of experiments was conducted to further improve the sensitivity and robustness of bioreporters. First, an △△△ mutant with three copper transport genes knocked out was constructed. Then, the sensing element was inserted into the chromosome of △△△ by gene knock-in method to obtain the bioreporter strain WMC-007. In optimized assay conditions, the linear detection range of Cu was 0.025-5 mg/L (0.39-78.68 μM) after incubating WMC-007 in Luria-Bertani medium for 5 h. The limit of detection of Cu was 0.0157 mg/L (0.25 μM). Moreover, fluorescence spectrometry and flow cytometry experiments showed more environmental robustness and lower background fluorescence signal than those of the sensor element based on plasmids. In addition, we found that the expression of GFPmut2 in WMC-007 was induced by free copper ions, rather than complex-bound copper, in a dose-dependent manner. Particularly, the addition of 40 mM 3-(-Morpholino)propanesulfonic acid buffer to WMC-007 culture enabled accurate quantification of bioavailable copper content in aqueous solution samples within a pH range from 0.87 to 12.84. The copper recovery rate was about 95.88-113.40%. These results demonstrate potential applications of WMC-007 as a bioreporter to monitor copper contamination in acidic mine drainage, industrial wastewater, and drinking water. Since whole-cell bioreporters are relatively inexpensive and easy to operate, the combination of this method with other physicochemical techniques will in turn provide more specific information on the degree of toxicity in water environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993034PMC
http://dx.doi.org/10.3389/fmicb.2019.03031DOI Listing

Publication Analysis

Top Keywords

bioavailable copper
12
water environments
12
copper
8
whole-cell bioreporters
8
copper ions
8
wmc-007
5
development sensitive
4
sensitive bioreporter
4
bioreporter antibiotic
4
antibiotic markers
4

Similar Publications

Aims: This study focuses on the synthesis and characterization of novel sitagliptin derivatives, aiming to develop potent, orally active anti-diabetic agents with minimal side effects for the management of type 2 diabetes mellitus. Copper (II) (SCu1-SCu9) and zinc (II) (SZn1-SZn9) metal complexes of sitagliptin-based derivatives were synthesized via a template reaction.

Material & Method: The synthesized complexes were comprehensively characterized using elemental analysis, FTIR, UV-Vis, 1 h NMR, and 13C NMR spectroscopy.

View Article and Find Full Text PDF

Integrated assessment of heavy metal pollution in the great bačka canal: Comparing active and passive sampling methods.

Chemosphere

December 2024

University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia.

This study investigates the environmental risks posed by heavy metals in sediment from the Great Bačka Canal using both active and passive sampling methods. The necessity of this research lies in the critical need to address sediment contamination in ecological hotspots and enhance sediment management practices. Active sampling revealed total heavy metal concentrations, while sequential extraction showed bioavailability varied across metal fractions.

View Article and Find Full Text PDF

[Characteristics and Comprehensive Quality Assessment of Heavy Metals in Soil-crop System of High Geological Background Area].

Huan Jing Ke Xue

January 2025

Chongqing Key Laboratory of Land Quality Geological Survey, Southeast Sichuan Geological Group, Chongqing Bureau of Geology and Minerals Exploration, Chongqing 400038, China.

Heavy metals (HMs) pollution in agricultural soil-rice systems has attracted worldwide attention as it directly threatens regional ecological security and human health. To understand the heavy metal pollution of agriculture soil and rice in the high geological background areas, a total of 200 paddy soil and rice samples were collected in southeast Chongqing. The concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) in paddy soil and rice were analyzed.

View Article and Find Full Text PDF

Cocoa-growing areas in Ghana have experienced a rise in mining activities affecting cocoa cultivation and increased concentrations of potentially toxic metals in the soil, which can accumulate in cocoa beans. This study evaluated potential toxic metal contamination in cocoa beans and soils from cocoa farms in mining and non-mining areas in Ghana. We used X-ray fluorescence and an ICP-MS to determine metal concentrations, and a Zeeman mercury analyzer to determine mercury.

View Article and Find Full Text PDF

Interactions between metal cations, notably Cu(II), and humic substances (HS) affect their mobility, bioavailability, and toxicity. This necessitates a molecular-level determination of the nature of HS functional groups binding Cu(II) (Cu-HS) and effects of pH on them. This study investigates the pH effects on the spectroscopic and structural properties of the complexes of Cu(II) with HS and representative model compounds using differential absorbance spectroscopy (DAS), examination of the properties of the d-d transition band characteristic for Cu(II) ions, and quantum chemical (QC) calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!