Ginsenoside Rg1 as an Effective Regulator of Mesenchymal Stem Cells.

Front Pharmacol

School of Stomatology, Xi'an Medical University, Xi'an, China.

Published: January 2020

Recently, breakthroughs have been made in the use of mesenchymal stem cells (MSCs) to treat various diseases. Several stem cell types have been authorized as drugs by the European Medicines Agency and the U.S. Food and Drug Administration. The Chinese official document "Notification of the management of stem cell clinical research (trial)" was also published in August 2015. Currently, China has approved 106 official stem cell clinical research filing agencies and 62 clinical research projects, which are mostly focused on MSC therapy. Hence, the optimization and development of stem cell drugs is imperative. During this process, maximizing MSC expansion, minimizing cell loss during MSC transplantation, improving the homing rate, precisely regulating the differentiation of MSCs, and reducing MSC senescence and apoptosis are major issues in MSC preclinical research. Similar to artemisinin extracted from the stems and leaves of , ginsenoside Rg1 (Rg1) is purified from the root or stem of ginseng. In the human body, Rg1 regulates organ function, which is inseparable from its regulation of adult stem cells. Rg1 treatment may effectively regulate the proliferation, differentiation, senescence, and apoptosis of MSCs in different microenvironments or . In this review, we discuss recent advances in understanding the effect of Rg1 on MSCs and describe the issues that must be addressed and prospects regarding Rg1 regulation of MSCs in preclinical or clinical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989539PMC
http://dx.doi.org/10.3389/fphar.2019.01565DOI Listing

Publication Analysis

Top Keywords

stem cell
16
stem cells
12
ginsenoside rg1
8
stem
8
mesenchymal stem
8
cell clinical
8
senescence apoptosis
8
rg1
6
mscs
5
cell
5

Similar Publications

The BMT CTN 1703 phase III trial confirmed that graft-versus-host disease (GVHD) prophylaxis with post-transplantation cyclophosphamide (PTCy), tacrolimus (Tac), and mycophenolate mofetil (MMF) results in superior GVHD-free, relapse-free survival (GRFS) compared with Tac/methotrexate (MTX) prophylaxis. This companion study assesses the effect of these regimens on patient-reported outcomes (PROs). Using the Lee Chronic GVHD Symptom Score and PROMIS subscales (physical function, GI symptoms, social role satisfaction) as primary end points and hemorrhagic cystitis symptoms and Lee subscales as secondary end points, responses from English and Spanish speakers were analyzed at baseline and days 100, 180, and 365 after transplant.

View Article and Find Full Text PDF

Chronic low-grade inflammation observed in older adults, termed inflammaging, is a common feature underlying a multitude of aging-associated maladies including a decline in hematopoietic activity. However, whether suppression of inflammaging can preserve hematopoietic health span remains unclear, in part because of a lack of tools to measure inflammaging within hematopoietic stem cells (HSCs). Here, we identify thrombospondin-1 (Thbs1) as an essential regulator of inflammaging within HSCs.

View Article and Find Full Text PDF

Many biological systems operate near the physical limits to their performance, suggesting that aspects of their behavior and underlying mechanisms could be derived from optimization principles. However, such principles have often been applied only in simplified models. Here, we explore a detailed mechanistic model of the gap gene network in the embryo, optimizing its 50+ parameters to maximize the information that gene expression levels provide about nuclear positions.

View Article and Find Full Text PDF

Background: The SEER Registry contains U.S. cancer statistics.

View Article and Find Full Text PDF

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!