: The study was aimed to assess γ‑glutamyltransferase (GGT) activity and concentration as a marker of oxidative stress induced by exposure to tobacco smoke in acute pancreatitis (AP) course. Examination of the relationship between GGT activity/concentration and single-nucleotide polymorphism (SNP rs5751901 and rs2236626) in GGT1 gene was performed. : We examined SNPs in 38 AP patients and 51 healthy subjects by PCR-RFLP methods. GGT concentration in blood was measured with the use of the ELISA method; GGT activity and GSH concentration were measured by the Szasz and Patterson methods, respectively. : In the non-AP smokers group with TC genotype for SNPrs5751901 an increased blood GGT activity compared to smokers with CC genotypes was shown. In the course of AP was observed an elevated GGT activity and the value of GGT activity/GGT concentration ratio in smokers compared to non-smokers, in AP patients with TC genotypes and CC genotypes, respectively, for both SNP: rs5751901 and rs2236626. In the group of smoking AP patients with the CC and TC genotypes in rs5751901 locus and CC and TT genotypes in rs2236626 locus a decreases in GSH concentration during hospitalization were noted. : SNP rs5751901 and rs2236626 cause changes in GGT activity. Smoking in the AP course contributes to increased GGT activity and excessive GSH use up in patients with TC and CC genotypes for both SNPs. Exposure to smoke xenobiotics enhances (3-fold) the risk of AP occurrence in individuals with TC genotypes for SNP rs5751901.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6990886 | PMC |
http://dx.doi.org/10.7150/ijms.38657 | DOI Listing |
Anal Chem
January 2025
Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, P.R. China.
Toxicon
December 2024
Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, S.P., Brazil; Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (ICAQF-UNIFESP), Diadema, S.P., Brazil. Electronic address:
L-Mimosine is the main active component of the plant Leucaena leucocephala. Due to its metal-chelating mechanism, it interacts with various metabolic pathways in living organisms, making it a potential pharmacological target, although it also leads to toxicity. The present study aimed to investigate the transplacental passage of L-mimosine and its effects on embryofetal development.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
Background: In recent years, with the increase of antibiotic resistance, tigecycline has attracted much attention as a new broad-spectrum glycylcycline antibiotic. It is widely used in the treatment of complex skin and soft tissue infections, complex abdominal infections and hospital-acquired pneumonia by inhibiting bacterial protein synthesis. Tigecycline can exhibit significant time-dependent bactericidal activity, and its efficacy is closely related to pharmacokinetics.
View Article and Find Full Text PDFPhytother Res
December 2024
Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt.
(1) Background and aim: Aloe arborescens Mill. (A. arborescens) is one of the most widely distributed species in the genus Aloe and has garnered widespread recognition for its anticancer properties.
View Article and Find Full Text PDFMar Drugs
December 2024
Centre for Functional Ecology: Science for People & Planet, Marine Resources, Conservation and Technology-Marine Algae Lab, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
Metabolic Syndrome (MetS) is a complex, multifactorial condition characterized by risk factors such as abdominal obesity, insulin resistance, dyslipidemia and hypertension, which significantly contribute to the development of cardiovascular disease (CVD), the leading cause of death worldwide. Early identification and effective monitoring of MetS is crucial for preventing serious cardiovascular complications. This article provides a comprehensive overview of various biomarkers associated with MetS, including lipid profile markers (triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio and apolipoprotein B/apolipoprotein A1 (ApoB/ApoA1) ratio), inflammatory markers (interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), plasminogen activator inhibitor type 1 (PAI-1), C-reactive protein (CRP), leptin/adiponectin ratio, omentin and fetuin-A/adiponectin ratio), oxidative stress markers (lipid peroxides, protein and nucleic acid oxidation, gamma-glutamyl transferase (GGT), uric acid) and microRNAs (miRNAs) such as miR-15a-5p, miR5-17-5p and miR-24-3p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!