Tannins are present in grape skins and seeds from where they are transferred into the must-wine matrix during the maceration stages of winemaking. However, tannin transfer is often incomplete. This could be due, among other reasons, to tannins becoming bound to grape cell wall polysaccharides, including soluble polymers, which are released during vinification and are present in high concentrations in the must/wine. The use of cell wall deconstructing enzymes offers the possibility of reducing these interactions, releasing more tannins into the final wine. The main aim of this study was to evaluate the optimal addition (individually, in combination or sequentially) of hydrolytic enzymes that would prevent tight polysaccharide-tannin associations. The use of comprehensive microarray polymer profiling (CoMPP) methodology provided key insights into how the enzyme treatments impacted the grape cell wall matrix and tannin binding. The results demonstrated that polygalacturonase + pectin-lyase promoted the highest release of tannins into solution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2019.108889DOI Listing

Publication Analysis

Top Keywords

cell wall
16
grape cell
8
impact carbohydrate-active
4
carbohydrate-active enzymes
4
enzymes mediating
4
cell
4
mediating cell
4
wall
4
wall polysaccharide-tannin
4
polysaccharide-tannin interactions
4

Similar Publications

Identifying the role of cellulase gene upon the infection of subsp. in citrus.

Mol Breed

January 2025

Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China.

Unlabelled: Citrus canker is a devastating disease caused by subsp. (), which secretes the effector PthA4 into host plants to trigger transcription of the susceptibility gene , resulting in pustule formation. However, the molecular mechanism underlying CsLOB1-mediated susceptibility to remains elusive.

View Article and Find Full Text PDF

Peribronchiolar metaplasia is an uncommon lesion characterized by fibrosis and bronchiolar epithelial cell proliferation along the peribronchiolar alveolar walls, primarily in response to bronchiolar and peribronchiolar injuries. Peribronchiolar metaplasia usually appears as ground glass nodules or sub-solid nodules on computed tomography. However, we present an exceptional case of peribronchiolar metaplasia that appeared as a solitary solid nodule on computed tomography.

View Article and Find Full Text PDF

Following our previous experience with cardiac xenotransplantation of a genetically modified porcine heart into a live human, we sought to achieve improved results by selecting a healthier recipient and through more sensitive donor screening for potential zoonotic pathogens. Here we transplanted a 10-gene-edited pig heart into a 58-year-old man with progressive, debilitating inotrope-dependent heart failure due to ischemic cardiomyopathy who was not a candidate for standard advanced heart failure therapies. He was maintained on a costimulation (anti-CD40L, Tegoprubart) blockade-based immunomodulatory regimen.

View Article and Find Full Text PDF

Several mungbean (Vigna radiata (L.) Wilczek) cultivars are susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens Ellis & Martin, and it is necessary to explore resistance sources and understand resistance mechanisms. However, the CLS resistance mechanisms have not yet been explored.

View Article and Find Full Text PDF

The close genetic resemblance between Listeria monocytogenes and Listeria innocua, combined with their presence in similar environments, poses challenges for species-specific detection in food products. Ensuring food safety through microbiological standards necessitates reliable detection of pathogens like L. monocytogenes and L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!