Myeloid-Derived Suppressor Cells in the Tumor Microenvironment.

Adv Exp Med Biol

Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA.

Published: February 2020

Myeloid-derived suppressor cells (MDSCs) represent a heterogenous population of immature myeloid cells capable of modulating immune responses. In the context of cancer, MDSCs are abnormally produced and recruited to the tumor microenvironment (TME) to aid in the establishment of an immunosuppressive TME that facilitates tumor escape. Additionally, MDSCs contribute to non-immunologic aspects of tumor biology, including tumor angiogenesis and metastasis. The clinical significance of MDSCs has recently been appreciated as numerous studies have suggested a correlation between circulating and intratumoral MDSC frequencies and tumor stage, progression, and treatment resistance. In this chapter, we review MDSC characterization, development, expansion, and mechanisms that facilitate immunosuppression and tumor progression. Furthermore, we highlight studies demonstrating the clinical significance of MDSCs in various disease states in addition to strategies that modulate various aspects of MDSC biology for therapeutic gain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-030-35723-8_8DOI Listing

Publication Analysis

Top Keywords

myeloid-derived suppressor
8
suppressor cells
8
tumor microenvironment
8
clinical significance
8
significance mdscs
8
tumor
7
mdscs
5
cells tumor
4
microenvironment myeloid-derived
4
cells mdscs
4

Similar Publications

Background: The cancer cell marker poliovirus receptor-like protein 4 (PVRL4) has been shown to be highly expressed in many cancers, including lung cancer. Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells with immunosuppressive roles that can attenuate the anticancer response. Here, the precise functions and the relationship between PVRL4 and MDSCs in lung adenocarcinoma (LUAD) progression were investigated.

View Article and Find Full Text PDF

Myeloid cells, including macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, play crucial roles in the innate immune system, contributing to immune defense, tissue homeostasis, and organ development. They have tremendous potential as therapeutic tools for diseases such as cancer and autoimmune disorders, but harnessing cell engineering strategies to enhance potency and expand applications is challenging. Recent advancements in stem cell research have made it possible to differentiate human embryonic stem cells and induce pluripotent stem cells into various cell types, including myeloid cells, offering a promising new approach to generate myeloid cells for cell therapy.

View Article and Find Full Text PDF

Tumor infiltration of inactive CD8 + T cells was associated with poor prognosis in Gastric Cancer.

Gastric Cancer

December 2024

Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.

Background: Gastric cancer (GC) shows limited response to immune checkpoint inhibitors due to its complex tumor immune microenvironment (TIME). This study explores the functions of various immune cells in the complex TIME in GC.

Methods: We assessed CD8 + T-cell infiltration of GC tissues by immunohistochemistry, and performed single-cell RNA sequencing (scRNA-seq) of tumor and normal tissues from 34 patients with GC.

View Article and Find Full Text PDF

Targeting immune evasion in hepatocellular carcinoma-initiating cells.

Trends Immunol

December 2024

Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:

Tumor-initiating cells (TICs) are particularly efficient at evading detection and elimination by the human immune system. Recent data from Yang and collaborators demonstrate that - at least in preclinical hepatocellular carcinoma models - the immunological privilege of CD49f TICs can be limited by targeting CD155, resulting in restored sensitivity to immune checkpoint inhibitors.

View Article and Find Full Text PDF

20(S)-ginsenoside Rg3 alleviates DSS-induced colitis by promoting ERK-dependent maturation of MDSCs into M2 macrophages.

Biomed Pharmacother

December 2024

College of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea. Electronic address:

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with immunosuppressive functions that play various roles in tumors and inflammatory diseases. In colitis, MDSCs accumulate in the inflamed colon, where they mature into M2-polarized macrophages and modulate inflammatory responses. Ginsenosides, active components of ginseng, have been shown to display colitis-alleviating effects in mouse models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!