Tissues from Post-Mortem Donors as Alternative Sources of Stem Cells for Regenerative Medicine.

Adv Exp Med Biol

Faculty of Pharmacy, Department of Clinical Biochemistry, University of Ljubljana, Ljubljana, Slovenia.

Published: December 2020

Stem cells provide for all of the tissues in our body during embryogenesis. In adult organisms, they can be found as rare populations of tissue-specific stem cells in quiescent states, although they can still regenerate damaged tissues. Astonishingly, these cells are retained in tissues even post-mortem. There have been several reports that have provided evidence that cells with stem-like capabilities can be isolated, expanded, and differentiated in vitro from various tissues several hours, or even several days, post-mortem. Moreover, some post-mortem-tissue-derived stem cells can successfully engraft and regenerate injured host tissues. Here, we review in-vitro and in-vivo studies that provide evidence of isolation and characterization of stem cells from different tissues post-mortem, with a focus on the musculoskeletal and neural systems. Finally, we discuss their potential for use in regenerative medicine, and what needs to be done in further research toward their better exploitation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/5584_2020_492DOI Listing

Publication Analysis

Top Keywords

stem cells
20
tissues post-mortem
12
regenerative medicine
8
tissues
7
cells
7
stem
5
post-mortem donors
4
donors alternative
4
alternative sources
4
sources stem
4

Similar Publications

Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.

View Article and Find Full Text PDF

Background: Transgender and gender diverse (TGD) people seek gender-affirming care at any age to manage gender identities or expressions that differ from their birth gender. Gender-affirming hormone treatment (GAHT) and gender-affirming surgery may alter reproductive function and/or anatomy, limiting future reproductive options to varying degrees, if individuals desire to either give birth or become a biological parent.

Objective And Rationale: TGD people increasingly pursue help for their reproductive questions, including fertility, fertility preservation, active desire for children, and future options.

View Article and Find Full Text PDF

Oxygen controls most metazoan metabolism, yet in mammals, tissue O levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O levels in the body.

View Article and Find Full Text PDF

Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.

View Article and Find Full Text PDF

Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!