Pleurotus ostreatus is one of the most cultivated edible mushrooms worldwide and few approaches have been done to analyze bacterial influence during its cultivation. Therefore, bacteria from commercial spawn, mycelial-colonized straw and fruiting bodies from healthy productive samples were counted, isolated and tested for their mycelial growth promoting ability. Bacterial cell numbers at different steps of the process showed low bacterial cell numbers in spawn and in fruiting bodies inner tissue compared to the high concentration in mycelial-colonized straw. The majority of the 38 isolates belonged to phyla Firmicutes and Actinobacteria were identified as Bacillus, Paenibacillus and Micromonospora species. Similarly, 16S rRNA gene bacterial clones obtained from mycelial biomass DNA samples showed bacterial presence of various genera including Bacillus and Paenibacillus. In the mycelial growth promoting ability tests, 30 isolates negatively affected mycelial growth, two isolates showed no effect on mycelial growth, and six isolates promoted mycelial growth. Moreover, mycelial thickness was influenced in different ways by the bacterial growth. In general, nearly all isolates growth-preventing were isolated from healthy spawn and mycelial-colonized straw, whereas fruiting bodies were the best source for isolation of mycelial growth-promoting bacteria. Characterization of bacterial isolates revealed that growth-preventing isolates exhibited various enzymatic activities in comparison with positive influencing bacteria that exhibited none or weak enzymatic activities. In addition, the influence of volatile compounds being present in the headspace of bi-plate co-cultures on P. ostreatus mycelial growth was demonstrated. The effect of isolates, that promoted mycelial growth in co-cultivation, to reduce P. ostreatus spawn running time, was evaluated on sterilized rye seeds. Results showed that not all mycelial promoted isolates were able to significantly promote P. ostreatus colonization. However, isolate M46F identified as Micromonospora lupini significantly reduce spawn running time. This is one of few studies to estimate cultivable bacteria from healthy samples of P. ostreatus cultivation, to evaluate a bacterial effect on mycelial growth, to show that fruiting bodies are a good source for mycelia growth-promoting isolates, and the first to report a shorter P. ostreatus spawn running time due to bacterial inoculation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2019.126393DOI Listing

Publication Analysis

Top Keywords

mycelial growth
36
fruiting bodies
16
mycelial
13
mycelial-colonized straw
12
spawn running
12
running time
12
growth
10
isolates
10
bacterial
9
pleurotus ostreatus
8

Similar Publications

Can Spp. Contribute to the Bioremediation and Biostimulation of Plants in Soil Contaminated with Herbicides?

ACS Omega

January 2025

Laboratory of Biological Control of Plant Disease and Laboratory of Plant Biotechnology, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Petrópolis, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil.

This work aimed to evaluate the potential of spp. in the bioremediation of herbicides and biostimulation of plants in herbicide-contaminated soils. In the first phase, the experiment followed a completely randomized design in a 4 × 3 × 4 factorial scheme with five replications, four strains of spp.

View Article and Find Full Text PDF

The polysaccharide chitosan possesses broad-spectrum antimicrobial properties and has proven effective in controlling various postharvest diseases in fruits. Nevertheless, the fundamental mechanisms underlying its action remain unclear. In this study, the antifungal effects of chitosan with different molecular weights against Fusarium avenaceum, a pathogen causing root rot in Angelica sinensis, were evaluated.

View Article and Find Full Text PDF

Antioomycete Nanoformulation for Biocontrol of English Walnut Crown and Root Rot Caused by .

Plants (Basel)

January 2025

Laboratorio de Fitopatología, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile.

In Chile and worldwide, walnut () production faces significant losses due to crown and root rot caused by the phytopathogen . Currently, control methods have proven insufficient or unfavorable for the environment, increasing the need for sustainable alternatives. This research evaluates nanoemulsions based on extracts of medicinal plants endemic to Chile to control in walnut crops.

View Article and Find Full Text PDF

This study investigated whether viable cells, dead cells or cell-free supernatants (CFS) were responsible for the biocontrol effect of strains from two important bacterial genera, and , known for their antifungal properties against plant pathogens and food spoilage microorganisms. Specifically, the capability of these strains to produce extracellular hydrolytic enzymes on specified media was assessed, along with their effectiveness in inhibiting the mycelial growth of several phytopathogenic fungi (, , and ) using dual culture plate assays. Results from these inhibition assays revealed that PF05 and LMG 23520 strains were the most effective in suppressing fungal growth, especially .

View Article and Find Full Text PDF

has a strong cadmium-enrichment ability, posing a potential threat to human health. However, the cadmium tolerance and detoxification mechanisms of are not understood. We investigated the physiological responses, subcellular distribution, and chemical forms of cadmium in two strains (1504 and L130) with contrasting cadmium tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!