Electron crystallography has focused in the last few years on the analyses of microcrystals, mainly organic compounds, triggered by recent publications on acquisition methods based on direct detection cameras and continuous stage tilting. However, the main capability of a transmission electron microscope is the access to features at the nanometre scale. In this context, a new acquisition method, called fast and automated diffraction tomography (Fast-ADT), has been developed in form of a general application in order to get the most of the diffraction space from a TEM. It consists of two subsequent tilt scans of the goniometric stage; one to obtain a crystal tracking file and a second one to acquire an electron diffraction tomography. This setup has been implemented on both TEM and STEM modes of the microscope, thus it can be installed on any TEM regardless of the availability of a scanning unit. BaSO crystals have been measured to demonstrate the validity of the technique for structure determination and refinement. A recently solved layered silicate, RUB-5, has been used to prove the method advantages for fine identification of disorder details. Last, a new polymorph of a DRED1 organic molecule has been solved ab initio and refined by X-ray powder diffraction to show the full application of the presented method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2020.112951 | DOI Listing |
Nat Commun
January 2025
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
Acoustically probing biological tissues with light or sound, photoacoustic and ultrasound imaging can provide anatomical, functional, and/or molecular information at depths far beyond the optical diffusion limit. However, most photoacoustic and ultrasound imaging systems rely on linear-array transducers with elevational focusing and are limited to two-dimensional imaging with anisotropic resolutions. Here, we present three-dimensional diffractive acoustic tomography (3D-DAT), which uses an off-the-shelf linear-array transducer with single-slit acoustic diffraction.
View Article and Find Full Text PDFMolecules
January 2025
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russia.
The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Restorative Dentistry - Endodontics, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil.
Objectives: To investigate volumetric changes, in vivo biocompatibility, and systemic migration from eight commercial endodontic sealer materials in paste/paste, powder/liquid, and pre-mixed forms.
Materials And Methods: The sealers AH Plus Bioceramic, AH Plus Jet, BioRoot RCS, MTApex, Bio-C Sealer, Bio-C Sealer Ion+, EndoSequence BC Sealer and NeoSEALER Flo were studied. After characterisation by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy and X-ray diffractometry (XRD), tubes were implanted in Wistar rats' alveolar bone and subcutaneous tissues.
J Biomed Opt
January 2025
Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China.
Significance: Optical coherence tomography (OCT) is widely utilized to investigate brain activities and disorders in anesthetized or restrained rodents. However, anesthesia can alter several physiological parameters, leading to findings that might not fully represent the true physiological state. To advance the understanding of brain function in awake and freely moving animals, the development of wearable OCT probes is crucial.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
Department of Electronic Engineering, Maynooth University, Maynooth, Co. Kildare, Ireland.
Optical diffraction tomography enables label-free, 3D refractive index (RI) imaging of biological samples. We present a novel, cost-effective approach to ODT that employs a modular design incorporating a self-reference holographic capture module. This two-part system consists of an illumination module and a capture module that can be seamlessly integrated with any life-science microscope using an automated alignment protocol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!