A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ruthenium derivatives attenuate LPS-induced inflammatory responses and liver injury via suppressing NF-κB signaling and free radical production. | LitMetric

Ruthenium derivatives attenuate LPS-induced inflammatory responses and liver injury via suppressing NF-κB signaling and free radical production.

Bioorg Chem

Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan. Electronic address:

Published: March 2020

Ruthenium metal complex has been shown to exert several chemical and biological activities. A series of three novel ruthenium derivatives (TQ 1, 2 and 4) were synthesized to evaluate the anti-inflammatory and hepatoprotective activities in lipopolysaccharide (LPS)-stimulated macrophages and mice liver injury. The hydroxyl radical (OH°) scavenging activity of these derivatives has also been evaluated. The results revealed that among the tested compounds, TQ-4 effectively attenuated LPS-induced abnormal alteration in liver histoarchistructure via reducing alanine transaminase (ALT) and aspartate transaminase (AST). This compound exhibited significant inhibition of inflammatory cytokines (TNF-α and IL-1β), inflammatory enzyme (iNOS), the component of NF-κB signaling pathway (p65) and JNK phosphorylation in LPS-induced mice liver tissues. In vitro results showed that TQ-4 had the best inhibition of NO production and iNOS expression in LPS-induced RAW 264.7 cells. Mechanistic approach indicated that TQ-4 inhibited the LPS-induced JNK phosphorylation, IκBα degradation, NF-κB p65 phosphorylation and its nuclear translocation, and hydroxyl radical (OH°) productions in RAW 264.7 cells. However, the compounds TQ-1 and 2 had no effects in this study. TQ-4 also inhibited LPS-induced OH° production. This study reveals the protective effect of TQ-4 against LPS-induced acute liver injury, inflammation, and oxidative reaction by destructing JNK/NF-κB signaling pathways. The result of this study may infer that TQ-4 might be a promising ruthenium metal derivative and/or therapeutic agent for treating liver injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2020.103639DOI Listing

Publication Analysis

Top Keywords

liver injury
16
ruthenium derivatives
8
nf-κb signaling
8
ruthenium metal
8
mice liver
8
hydroxyl radical
8
radical oh°
8
jnk phosphorylation
8
raw 2647
8
2647 cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!