The Raman response of the YAlO (YAP) perovskite is modeled by means of periodic density functional theory. A number of different approximations to the exchange-correlation functional are benchmarked against the structural and spectroscopic data as imposing all-electron Gaussian-type basis sets. The WC1LYP functional was found to be superior, particularly outperforming other tested approaches in the prediction of the local structure of the AlO subunits, which reflects in the observed lattice-dynamics. The Raman response is further decomposed into the directional spectra, which are due to different components of the polarizability tensor, and confronted with the experimental Raman spectra, recorded in different scattering geometries of the single-crystalline film of YAP. The in silico lattice dynamics provides the unequivocal assignment of the observed bands with an excellent match to the experimental spectra, allowing for a complete analysis of the underlying phonon modes in terms of their energy, symmetry and the directional activity. The presented analysis serves as a high-quality reference, potentially useful in the future studies of other YAP materials, where Raman spectroscopy along with the X-Ray diffraction is the first method of choice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2020.118111 | DOI Listing |
3 Biotech
February 2025
Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai, Tamil Nadu 600034 India.
Unlabelled: The persistent challenge posed by antibiotic-resistant bacteria and tuberculosis necessitates innovative approaches to antimicrobial treatment. This study explores the synthesis and characterization of NiZrO₃ nanoparticles integrated with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (MWCNT), using a microwave-assisted green synthesis route, employing fenugreek () seed extract as a gelling agent. The synthesised nanocomposites were systematically analyzed using XRD, FT-IR, Raman spectroscopy, HR-SEM and HR TEM analysis to assess structural, optical, and morphological properties.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
The electrochemical reduction of carbon dioxide (CORR) offers potential for sustainable production and greenhouse gas mitigation, particularly with renewable energy integration. However, its widespread application is hindered by expensive catalysts, low selectivity, and limited current density. This study addresses these challenges by developing a low-mass-loading two-dimensional (2D) BiOSe catalyst chemical vapor deposition (CVD).
View Article and Find Full Text PDFChemistry
January 2025
Manchester Interdisciplinary Biocentre: The University of Manchester Manchester Institute of Biotechnology, Biotechnology and chemical engineering, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Hypohalites are commonly generated in biological systems, mostly with functions related to defense and immune system response. These hypohalites can bind to metal centers and are known for their strong oxidizing properties that play crucial roles in various biological processes. Herein, we report the synthesis, characterization and reactivity of novel biomimetic Ru(III)-hypochlorite complexes and focus the work on the electronic effects associated with the incorporation of methyl groups in a pentadentate ligand framework in an asymmetric fashion.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, National Institute of Technology, Nara College, Yamatokoriyama, Nara 639-1080, Japan.
This study focuses on two types of phosphonium cation-based ionic liquids (P-ILs) with different alkyl chains: triethylalkylphosphonium (P222R) and tributylalkylphosphonium (P444R) cations. Broadband dielectric spectroscopy showed that the translational motion of the ions accelerated with an increasing number of alkyl chains by coupling with their rotational motion in both P-ILs. Raman spectroscopy revealed that P222R cations, despite dielectric similarities to P444R cations, can form all-trans conformations and cation-rich nanodomains because they have a relatively polar, short alkyl chain moiety with a central P atom and less-polar alkyl chains than those of P444R cations.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:
Background: The multifunctional cytokine interleukin-6 (IL-6) plays a pivotal role in chronic and acute inflammatory responses, underscoring the importance of accurately determining IL-6 levels for early diagnosis, prevention, and treatment of inflammation.
Results: This study developed a versatile and innovative single-particle surface-enhanced Raman spectroscopy (SERS) sensing platform for the precise and sensitive quantification of IL-6 in complex samples using a novel one-pot synthesized, silver ions-doped three-dimensional porous gold microparticles (PGMs) with abundant hot spots for robust SERS enhancement. By rationally designing rich cytosine-Ag-cytosine base pairs between IL-6 aptamers and complementary chains on the PGMs, we harnessed the SERS-enhancing effect to achieve highly sensitive and specific IL-6 quantification within a wide range of 10 to 10 mg/mL and a limit of detection (LOD) of 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!