Synergy between plasminogen activator inhibitor-1, α-synuclein, and neuroinflammation in Parkinson's disease.

Med Hypotheses

Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7525, USA. Electronic address:

Published: May 2020

Parkinson's disease (PD) is a progressive degenerative nervous system disorder and is the second most common neurodegenerative disorder in the elderly population. The disease originates from the loss of dopamine-producing neurons in the substantia nigra in the brain, resulting in unregulated activity of the basal ganglia. Αlpha-synuclein (α-syn) is a protein found to aggregate in the substantia nigra region of patients with PD, forming Lewy Body inclusions; its aggregation may contribute to neuronal cell death in PD. This work hypothesizes about the synergistic relationship between α-syn aggregation and neuroinflammation to up-regulate expression of the serine protease inhibitor (serpin) plasminogen activator inhibitor-1 (PAI-1). The protease, plasmin, has been shown to cleave extracellular α-syn (including its monomeric, oligomeric, and fibrillary forms), resulting in less aggregation and Lewy Body formation. The zymogen plasminogen is converted to its active serine protease form, plasmin, either by tissue plasminogen activator (tPA) or by urokinase plasminogen activator (uPA) bound to urokinase receptor (uPAR). Both tPA and uPA/uPAR are inhibited by PAI-1. Thus, when PAI-1 levels increase, less plasmin is generated, which would lead to reduced proteolysis of α-syn. Expression of PAI-1 is increased both in inflammatory environments and in the presence of extracellular α-syn aggregates. This scenario suggests a pathological amplification loop: increased extracellular α-syn aggregation activates an inflammatory response from microglia and astrocytes, increasing PAI-1 levels, and decreasing the generation of plasmin. With reduced plasmin, less α-syn can be cleaved, and aggregation continues, sustaining the pathological process. Understanding this putative pathogenic loop could provide insight into the means by which neurodegeneration progresses in PD, and it may offer possible novel therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mehy.2020.109602DOI Listing

Publication Analysis

Top Keywords

plasminogen activator
16
extracellular α-syn
12
activator inhibitor-1
8
parkinson's disease
8
substantia nigra
8
lewy body
8
α-syn aggregation
8
serine protease
8
pai-1 levels
8
α-syn
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!