The nano-particulate system for oral delivery faces a big challenge across the gastrointestinal bio-barriers. The aim was to explore the potential applications of bile acid transporter mediated the self-assembled hybrid nanoparticles (SHNPs) of sodium taurocholate (STC) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus) for augmenting the oral delivery of poorly water-soluble drugs. Felodipine (FLDP) was chosen as a model drug. The self-assembly of STC with Soluplus to load FLDP and the microstructure of the SHNPs were confirmed using molecular simulation, STC determination by high performance liquid chromatography (HPLC) and transmission electron microscope. Results showed that STC was integrated with Soluplus on the surface of nanoparticles by hydrophobic interactions. The permeability of FLDP loaded STC/Soluplus SHNPs was STC dependent in the ileum, which was inhibited by the higher concentrations of STC and the inhibitor of apical sodium-dependent bile acid transporter (ASBT). STC/Soluplus (1:9) SHNPs significantly improved the drug loading of FLDP, achieved the highest permeability of FLDP and realized 1.6-fold of the area under the curve (AUC) of Soluplus self-assembled nanoparticles (SNPs). A water-quenching fluorescent probe P4 was loaded into the STC/Soluplus SHNPs, which verified that the SHNPs were transferred intactly across the ileum. In conclusion, STC/Soluplus SHNPs via ASBT are a potential strategy for enhancing the oral bioavailability of poorly water-soluble drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2020.119120 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!