Methamphetamine (METH) is a highly addictive stimulant that results in serious and persistent neurotoxic effects. Studies have indicated that luteolin, a flavonoid, may confer neuroprotection against neurotoxicity. Nevertheless, the effects of luteolin on METH-induced neurotoxicity have not been sufficiently verified. In the present study, Sprague Dawley rats were pretreated with luteolin (100 mg/kg) or sodium dodecyl sulfate water, followed by administration of METH (15 mg/kg) or saline. Rat striata were then collected for RNA-sequencing and subsequent analyses. A total of 347 differentially expressed genes (DEGs) were identified in the METH group with 20 pathways, including the phosphoinositol 3 kinase (PI3K)/protein kinase B (Akt), found to be enriched by the KEGG analysis. Seventy-five of the 347 DEGs were modulated in luteolin-pretreated rats, which were enriched into 12 pathways, containing the PI3K/Akt. Results further showed that luteolin pretreatment significantly repressed the METH-induced increases of PI3K, Akt, p-Akt, p53, Bax, caspase 3, normalized the ratio of p-Akt/Akt, and autophagy-related proteins (Beclin1, Atg5 and LC3-II) expression. Taken together, these findings indicate that luteolin attenuates METH-induced apoptosis and autophagy by suppressing the PI3K/Akt pathway. In this case, it exerts protection against METH-induced neurotoxicity. This provides a platform for development of potential therapies for METH treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2020.111179DOI Listing

Publication Analysis

Top Keywords

suppressing pi3k/akt
8
apoptosis autophagy
8
meth-induced neurotoxicity
8
luteolin
6
luteolin alleviates
4
alleviates methamphetamine-induced
4
neurotoxicity
4
methamphetamine-induced neurotoxicity
4
neurotoxicity suppressing
4
pi3k/akt pathway-modulated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!