Mutations in are a cause of juvenile neuronal ceroid lipofuscinosis (JNCL), also known as Batten disease. Clinical manifestations include cognitive regression, progressive loss of vision and motor function, epileptic seizures and a significantly reduced lifespan. CLN3 localizes to endosomes and lysosomes, and has been implicated in intracellular trafficking and autophagy. However, the precise molecular function of CLN3 remains to be elucidated. Previous studies showed an interaction between CLN3 and Rab7A, a small GTPase that regulates several functions at late endosomes. We confirmed this interaction in live cells and found that CLN3 is required for the efficient endosome-to-TGN trafficking of the lysosomal sorting receptors because it regulates the Rab7A interaction with retromer. In cells lacking CLN3 or expressing CLN3 harbouring a disease-causing mutation, the lysosomal sorting receptors were degraded. We also demonstrated that CLN3 is required for the Rab7A-PLEKHM1 interaction, which is required for fusion of autophagosomes to lysosomes. Overall, our data provide a molecular explanation behind phenotypes observed in JNCL and give an indication of the pathogenic mechanism behind Batten disease.This article has an associated First Person interview with the first author of the paper.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.234047DOI Listing

Publication Analysis

Top Keywords

cln3
8
cln3 required
8
lysosomal sorting
8
sorting receptors
8
cln3 regulates
4
regulates endosomal
4
endosomal function
4
function modulating
4
modulating rab7a-effector
4
rab7a-effector interactions
4

Similar Publications

CLN2 and CLN3 diseases, the most common types of Batten disease (also known as neuronal ceroid lipofuscinosis), are childhood dementias associated with progressive loss of speech, language and feeding skills. Here we delineate speech, language, non-verbal communication and feeding phenotypes in 33 individuals (19 females) with a median age of 9.5 years (range 3-28 years); 16 had CLN2 and 17 CLN3 disease; 8/15 (53%) participants with CLN2 and 8/17 (47%) participants with CLN3 disease had speech and language impairments prior to genetic diagnosis.

View Article and Find Full Text PDF

Introduction: CLN8-Batten disease is a rare neurodegenerative disorder characterized phenotypically by progressive deterioration of motor and cognitive abilities, visual symptoms, epileptic seizures, and premature death. Mutations in CLN8 result in characteristic Batten disease symptoms and brain-wide pathology including accumulation of lysosomal storage material, gliosis, and neurodegeneration. Recent investigations of other subtypes of Batten disease (CLN1, CLN3, CLN6) have emphasized the influence of biological sex on disease and treatment outcomes; however, little is known about sex differences in the CLN8 subtype.

View Article and Find Full Text PDF

Tagless LysoIP for immunoaffinity enrichment of native lysosomes from clinical samples.

J Clin Invest

December 2024

Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.

Lysosomes are implicated in a wide spectrum of human diseases including monogenic lysosomal storage disorders (LSDs), age-associated neurodegeneration and cancer. Profiling lysosomal content using tag-based lysosomal immunoprecipitation (LysoTagIP) in cell and animal models has substantially moved the field forward, but studying lysosomal dysfunction in human patients remains challenging. Here, we report the development of the 'tagless LysoIP' method, designed to enable the rapid enrichment of lysosomes, via immunoprecipitation, using the endogenous integral lysosomal membrane protein TMEM192, directly from clinical samples and human cell lines (e.

View Article and Find Full Text PDF

Phenotypic variability observed in a Chinese patient cohort with biallelic variants in the genes.

Mol Vis

November 2024

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab. Beijing, China.

Purpose: The neuronal ceroid lipofuscinoses (NCLs) comprise a group of inherited neurodegenerative disorders with thirteen NCL-disease causing genes ceroid lipofuscinosis neuronal ( identified. The purpose of this study was to describe the genetic and clinical characteristics of a cohort of Chinese patients harboring biallelic variants in the genes.

Methods: We recruited 14 patients from 13 unrelated families who carried biallelic variants in the genes.

View Article and Find Full Text PDF

Extending the G1 phase improves the production of lipophilic compounds in yeast by boosting enzyme expression and increasing cell size.

Proc Natl Acad Sci U S A

November 2024

Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

Cell phase engineering can significantly impact protein synthesis and cell size, potentially enhancing the production of lipophilic products. This study investigated the impact of G1 phase extension on resource allocation, metabolic functions, and the unfolded protein response (UPR) in yeast, along with the potential for enhancing the production of lipophilic compounds. In brief, the regulation of the G1 phase was achieved by deleting (G1 cyclin) in various yeast strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!