A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deoxycholic acid-stimulated macrophage-derived exosomes promote spasmolytic polypeptide-expressing metaplasia in the stomach. | LitMetric

Deoxycholic acid-stimulated macrophage-derived exosomes promote spasmolytic polypeptide-expressing metaplasia in the stomach.

Biochem Biophys Res Commun

Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Nanjing, China. Electronic address:

Published: April 2020

Rationale: Spasmolytic polypeptide-expressing metaplasia (SPEM) is an important risk factor for the occurrence of gastric cancer. It may be driven by a chronic inflammatory environment in which macrophage is involved. Studies have shown that intestinal metaplasia may originate from SPEM, and bile acid-induced chronic inflammation plays an important role in the process of intestinal metaplasia. However, whether bile acids are involved in the development of SPEM and the specific mechanism are unclear. Meanwhile, macrophages are known to be involved in inflammation regulation by releasing various factors, including exosomes. In this study, we hypothesized that the exosomes released from macrophages stimulated by deoxycholic acid participated in the development of SPME.

Methods: In vivo, mice were gavaged with deoxycholic acid for 4 weeks, and gastric tissues were harvested. In vitro, deoxycholic acid-induced macrophage-derived exosomes were isolated by ultracentrifugation and cocultured with the gastric organoids of mice. Immunofluorescence staining and quantitative real-time PCR were used to analyze markers of macrophages and SPEM.

Results: In vivo, after 4 weeks of deoxycholic acid intragastric administration, macrophage markers (F4/80) and SPEM markers (TFF2 and GSII lectin) were increased in from treated mice compared with those from normal control mice. In vitro, macrophage-derived exosomes labeled with PKH67 were internalized by gastric organoids. Deoxycholic acid-induced macrophage-derived exosomes increased the expression of SPEM markers (TFF2 and GSII lectin) in gastric organoids compared to exosomes derived from macrophages without deoxycholic acid stimulation.

Conclusion: Macrophage-derived exosomes may be a novel mechanism by which deoxycholic acid promotes SPEM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2020.01.159DOI Listing

Publication Analysis

Top Keywords

macrophage-derived exosomes
20
deoxycholic acid
20
gastric organoids
12
deoxycholic
8
exosomes
8
spasmolytic polypeptide-expressing
8
polypeptide-expressing metaplasia
8
intestinal metaplasia
8
deoxycholic acid-induced
8
acid-induced macrophage-derived
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!