AI Article Synopsis

  • Soybean is a plant from East Asia that struggles to grow well in West Africa due to its poor adaptation to tropical environments, which is influenced by key genes affecting flowering time and plant structure.
  • The study created soybean lines with different gene combinations to assess their growth traits (like days to flowering and maturity) in various field conditions in northern Ghana, finding significant genetic impacts on these traits.
  • The research highlights how understanding specific soybean genes can aid in breeding programs, ultimately improving yields in tropical climates by selecting for advantageous gene combinations.

Article Abstract

Background: Soybean is native to the temperate zones of East Asia. Poor yields of soybean in West African countries may be partially attributed to inadequate adaptation of soybean to tropical environments. Adaptation will require knowledge of the effects of allelic combinations of major maturity genes (E1, E2, and E3) and stem architecture. The long juvenile trait (J) influences soybean flowering time in short, ~ 12 h days, which characterize tropical latitudes. Soybean plant architecture includes determinate or indeterminate stem phenotypes controlled by the Dt1 gene. Understanding the influence of these genetic components on plant development and adaptation is key to optimize phenology and improve soybean yield potential in tropical environments.

Results: Soybean lines from five recombinant inbred populations were developed that varied in their combinations of targeted genes. The soybean lines were field tested in multiple environments and characterized for days to flowering (DTF), days to maturity (DTM), and plant height in locations throughout northern Ghana, and allelic combinations were determined for each line for associating genotype with phenotype. The results revealed significant differences based on genotype for DTF and DTM and allowed the comparison of different variant alleles of those genes. The mutant alleles of J and E1 had significant impact on DTF and DTM, and alleles of those genes interacted with each other for DTF but not DTM. The Dt1 gene significantly influenced plant height but not DTF or DTM.

Conclusions: This research identified major and minor effect alleles of soybean genes that can be combined to control DTF, DTM, and plant height in short day tropical environments in Ghana. These phenotypes contribute to adaptation to a low latitude environment that can be optimized in a soybean breeding program with targeted selection of desired allele combinations. The knowledge of the genetic control of these traits will enhance molecular breeding to produce optimally adapted soybean varieties targeted to tropical environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006184PMC
http://dx.doi.org/10.1186/s12870-020-2276-yDOI Listing

Publication Analysis

Top Keywords

tropical environments
16
dtf dtm
16
soybean
12
plant height
12
flowering time
8
allelic combinations
8
dt1 gene
8
soybean lines
8
dtm plant
8
alleles genes
8

Similar Publications

Co-existence of two bla and bla on distinct plasmids in a carbapenem-resistant Klebsiella pneumoniae from a tertiary hospital, Tanzania.

J Glob Antimicrob Resist

January 2025

Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Department of Clinical Science, University of Bergen, Bergen, Norway. Electronic address:

Purpose: To understand the mechanisms of carbapenem-resistant Klebsiella pneumoniae (CRKP) from Tanzania and characterize the genomes carrying the carbapenemase genes.

Methods: Clinical CRKP isolates were selected from ongoing antimicrobial-resistant surveillance at Muhimbili National Hospital, Dar es Salaam, Tanzania. Whole-genome sequencing was performed utilizing Illumina and Nanopore platforms.

View Article and Find Full Text PDF

Son of a beach: Coastal development and the loss of natural beaches over time (1919 to 2018) on Okinawa Island, southern Japan.

Mar Pollut Bull

January 2025

Molecular Invertebrate Systematics and Ecology Laboratory, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan. Electronic address:

The coastline of Okinawa Island, Japan, has been affected by human-made alterations for decades, often from land reclamation and coastal defense construction. Here, we use an Imperial Japanese Army map made between 1919 and 1921 to describe the composition of the Okinawan coastline approximately 100 years ago, and by overlapping this old map with a modern-day map of Okinawa (2018), we identified 131 sites where coastlines showed clear human-made alterations. For these sites, we examined what kinds of ecosystems were lost and what has replaced them.

View Article and Find Full Text PDF

Neglected class A carbapenemases: Systematic review of IMI/NmcA and FRI from a One Health perspective.

Sci Total Environ

January 2025

Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.

Carbapenemase-producing Enterobacterales are pathogens classified as a critical priority by the World Health Organization and a burden on human health worldwide. IMI, NmcA, and FRI are under-detected class A carbapenemases that have been reported in the human, animal and environmental compartments, particularly these last 5 years. Bacteria producing these carbapenemases have been mostly identified in digestive carriage screenings, but they are also involved in severe infections, such as bacteremia.

View Article and Find Full Text PDF

Selenium (Se) is an essential element for humans, playing a critical role in the functioning of the immune system. The global prevalence of dietary Se deficiency is a significant public health concern, largely attributed to the low levels of Se present in crops. The sufficient Se in plants and humans is determined by the presence of stable Se sources in the soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!