In this study, the effects of shrinkage reduction agent (SRA) content and filler type on the deformability characteristics of unsaturated polyester (UP) resin-based polymer concrete were experimentally investigated. Specifically, the setting shrinkage, thermal expansion, maximum compressive strain and the modulus of elasticity of UP polymer concrete were all analyzed. Setting shrinkage was found to be influenced by the UP resin, the SRA and filler. The thermal expansion, maximum compressive strain and modulus of elasticity were also affected by the aggregate. The effect of SRA content on deformability was found to be greater than that of the filler type. To put UP polymer concrete to efficient use, it is essential to secure proper deformability according to the intended purpose. At that time, it is desirable that the deformation characteristics resulting from the SRA content and filler type sufficiently reflect when the mix proportion is determined. The effects of filler type on the deformability of UP polymer concrete are such that: A uniform dispersion of filler particles impacts the setting shrinkage; the thermal expansion is influenced by the filler's various thermal expansion properties; the compressive strain is related to the nature of the small spherical particles that tend to fill porosity, producing better packing of the aggregate materials; and the modulus of elasticity is influenced by the density, which is related to the strength of the filler. However, additional in-depth studies are required on all of these elements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040677PMC
http://dx.doi.org/10.3390/ma13030727DOI Listing

Publication Analysis

Top Keywords

filler type
16
polymer concrete
16
thermal expansion
16
sra content
12
setting shrinkage
12
compressive strain
12
modulus elasticity
12
unsaturated polyester
8
polyester resin-based
8
filler
8

Similar Publications

How Should We Use Hyaluronidase for Dissolving Hyaluronic Acid Fillers?

J Cosmet Dermatol

January 2025

Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.

Background: Hyaluronic acid (HA) fillers are commonly used in esthetic medicine for facial contouring and rejuvenation. However, complications such as overcorrection, vascular occlusion, and irregular filler distribution necessitate the use of hyaluronidase to dissolve the fillers. This study aimed to evaluate the efficacy of hyaluronidase in degrading different types of HA fillers and provide clinical guidelines for its use based on filler type, dosage, and application techniques.

View Article and Find Full Text PDF

Herbal dust, a waste byproduct from filter-tea production, was annealed to form ash that can be incorporated into natural rubber as an eco-friendly filler. Three types of herbal dust ash (HDA), green tea, hibiscus, and lemon balm, were added at two different contents, 2.5 and 5 phr, into the rubber compound, while the content of carbon black, as a filler, was maintained at 50 phr in all samples.

View Article and Find Full Text PDF

Synthetic Dermal Fillers in Treating Acne Scars: A Comparative Systematic Review.

J Cosmet Dermatol

January 2025

College of Medicine, Department of Dermatology, Imam Mohammad Ibn Saud University, Riyadh, Saudi Arabia.

Background: Acne is a common condition observed in adolescents and in most severe acne the scars develop. There are numerous treatment options for acne scars. However, no standardized guidelines have been established to guide physicians in the optimal treatment of acne scars.

View Article and Find Full Text PDF

Tire wear particles (TWPs) are among the most relevant sources of microplastic pollution of the environment. Nevertheless, common analytical methods like IR and Raman spectroscopy are highly impaired by additives and filler materials, leaving only thermogravimetric methods for chemical analysis of TWPs in most cases. We herein present quantitative NMR spectroscopy (qNMR) as an alternative tool for the quantification of the polymeric material used for the production of tires, including natural rubber (NR), styrene-butadiene-copolymer (SBR), polyethylene-co-propylene (EPR) and polybutadiene (BR).

View Article and Find Full Text PDF

Unveiling the Potential of Civil Briquette Furnace Slag as a Silico-Aluminon Additive in Alkali-Activated Materials.

Materials (Basel)

December 2024

Zhongtu Dadi International Architectural Design Co., Ltd., Shijiazhuang 050000, China.

Civil briquette furnace slag (FS), as a type of industrial solid waste, is not currently being recycled as a resource by the building materials industry. This study focuses on the potential of FS in the formulation of alkali-activated materials (AAMs) compared with calcium carbide slag (CS). This study encompasses three distinct AAM systems: alkali-activated fly ash alone (AAFA), fly ash-slag powder blends (AAFB), and slag powder alone (AABS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!