This work focused on enhancing the flux on hydrophobic polymeric membranes aimed for direct contact membrane distillation desalination (DCMD) process without compromising salt rejection efficiency. Successful coating of commercial porous poly-tetrafluoroethylene membranes with poly(vinyl alcohol) (PVA) was achieved by solution dipping followed by a cross-linking step. The modified membranes were evaluated for their performance in DCMD, in terms of water flux and salt rejection. A series of different PVA concentration dipping solutions were used, and the results indicated that there was an optimum concentration after which the membranes became hydrophilic and unsuitable for use in membrane distillation. Best performing membranes were achieved under the specific experimental conditions, water flux 12.2 L·m·h [LMH] with a salt rejection of 99.9%. Compared to the pristine membrane, the flux was enhanced by a factor of 2.7. The results seemed to indicate that introducing hydrophilic characteristics in a certain amount to a hydrophobic membrane could significantly enhance the membrane distillation (MD) performance without compromising salt rejection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077436PMC
http://dx.doi.org/10.3390/polym12020345DOI Listing

Publication Analysis

Top Keywords

membrane distillation
16
salt rejection
16
direct contact
8
contact membrane
8
compromising salt
8
water flux
8
membranes
6
membrane
6
enhancement flux
4
flux performance
4

Similar Publications

Comparative analysis of sensory properties and chemical composition in grape spirits: Pervaporation separation vs. distillation.

Food Chem

December 2024

Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China. Electronic address:

To clarify the effects of pervaporation and distillation on aroma profiles, the Sensomics approach investigated the aroma characteristics and key aroma compounds of Cabernet Sauvignon (CS) and Ugni Blanc (UB) grape spirits produced by pervaporation (UB-P, CS-P) and distillation (UB-D, CS-D). The results indicated that pervaporated grape spirits exhibited stronger floral and fruity aromas, while distilled grape spirits were characterized by more pronounced cooked apple and toasty aromas. Consumers preferred products with intense floral and fruity aromas and weaker cooked apple note.

View Article and Find Full Text PDF

Architecting highly hydratable and permeable dense Janus membrane for rapid and robust membrane distillation desalination.

Water Res

December 2024

School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China. Electronic address:

Dense Janus membranes (JMs) are potential candidates in hypersaline wastewater treatments for membrane distillation (MD). However, dense surface layers generally add obvious membrane mass transfer resistance, limiting its practical application. In this study, a novel dense JM was facilely developed by controlled interfacial polymerization utilizing a phosphonium functional monomer (THPC) on hydrophilic polyvinylidene fluoride (PVDF) substrate.

View Article and Find Full Text PDF

System Dynamics Modeling of Scale Formation in Membrane Distillation Systems for Seawater and RO Brine Treatment.

Membranes (Basel)

November 2024

Civil and Environmental Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Republic of Korea.

To overcome the limitations of traditional Reverse Osmosis (RO) desalination, Membrane Distillation (MD) has gained attention as an effective solution for improving the treatment of seawater and RO brine. Despite its potential, the formation of inorganic scales, particularly calcium sulfate (CaSO), continues to pose a major challenge. This research aims to explore the scaling mechanisms in MD systems through a combination of experimental analysis and dynamic modeling.

View Article and Find Full Text PDF

Coupling CO capture process with electrochemically enhanced membrane distillation system for lithium-ion battery recovery: Reagent-Saving and environmental footprint reducing.

Water Res

December 2024

College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China. Electronic address:

The evolution of energy structure and the push for carbon neutrality have triggered an urgent call for lithium-ion batteries (LIBs). However, reclaiming end-of-life LIBs with high purity, high efficiency, and low environmental impact, particularly by eliminating chemical reagent usage and promoting a closed-loop carbon footprint, is challenging. Herein, we proposed a strategy that couples the carbon capture (CC) process with an electrochemically enhanced membrane distillation system (ECMD).

View Article and Find Full Text PDF

Objective: . Aim: To investigate changes in oxidative stress indicators in rats under conditions of long-term ethanol exposure.

Patients And Methods: Materials and Methods: We studied the effect of prolonged exposure to ethanol on the activity of free radical processes in the gonads of rats of both sexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!